參考文獻 |
[1] Tesfamariam, S., and Martin-Perez, B. "Stress wave propagation for evaluation of reinforced concrete structures." Non-Destructive Evaluation of Reinforced Concrete Structures. Woodhead Publishing, pp. 417-440, 2010.
[2] Sawangsuriya, A. "Wave propagation methods for determining stiffness of geomaterials." Wave processes in classical and new solids, vol. 44, 2012.
[3] Ostachowicz, W. and Radzie?ski, M. "Structural health monitoring by means of elastic wave propagation." Journal of Physics: Conference Series, vol. 382 (1). IOP Publishing, 2012.
[4] Hu, Y. and Yang, Y. "Wave propagation modeling of the PZT sensing region for structural health monitoring." Smart Materials and Structures, vol. 16(3), pp. 706, 2007.
[5] Jamaludin, N., Mba, D. and Bannister, R.H. "Condition monitoring of slow-speed rolling element bearings using stress waves." Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, vol. 215.4, pp. 245-271, 2001.
[6] Lee, B. C., and Staszewski, W. J. "Modelling of Lamb waves for damage detection in metallic structures: Part I. Wave propagation." Smart materials and structures, vol. 12(5), pp. 804, 2003.
[7] Lee, B. C., and Staszewski, W. J. "Modelling of Lamb waves for damage detection in metallic structures: Part II. Wave interactions with damage." Smart materials and structures, vol. 12(5), pp. 815, 2003.
[8] Palacz, M. and Krawczuk, M. "Analysis of longitudinal wave propagation in a cracked rod by the spectral element method." Computers & structures, vol. 80(24), pp. 1809-1816, 2002.
[9] Krawczuk, M., Grabowska, J. and Palacz, M. "Longitudinal wave propagation. Part II—Analysis of crack influence." Journal of Sound and Vibration, vol. 295(3-5), pp. 479-490, 2006.
[10] Gaul, L., Bischoff, S., Sprenger, H. and Haag, T. "Numerical and experimental investigation of wave propagation in rod-systems with cracks." Engineering fracture mechanics, vol. 77(18), pp. 3532-3540, 2010.
[11] Wang, X., Yu, T., Yan, H., Ding, J., Li, Z., Qin, Z. and Chu, F. "Application of stress wave theory for pyroshock isolation at spacecraft-rocket interface." Chinese Journal of Aeronautics, vol. 34(8), pp. 75-86, 2021.
[12] Fang, X. "A one-dimensional stress wave model for analytical design and optimization of oscillation-free force measurement in high-speed tensile test specimens." International Journal of Impact Engineering, vol. 149, pp. 103770, 2021.
[13] Love A.E.H. A treatise on the mathematical theory of elasticity. New York: Dover Publications, 1944.
[14] D’Alembert, J. "Researches on the curve that a tense cord forms when set into vibration." Hist. Acad. R. Des Sci. BL Berlin, vol. 3 pp. 214-249, 1747.
[15] Yang, H., Li, Y. and Zhou, F. "Propagation of stress pulses in a Rayleigh-Love elastic rod." International Journal of Impact Engineering, vol. 153, pp. 103854, 2021.
[16] Yang, H., Li, Y. and Zhou, F. "Stress waves generated in a Rayleigh-Love rod due to impacts." International Journal of Impact Engineering, 159, pp. 104027, 2022.
[17] Beddoe, B. "Propagation of elastic stress waves in a necked rod." Journal of Sound and Vibration, vol. 2(2), pp. 150-166, 1965.
[18] Fraige, F.Y. and Es-Saheb, M.H. "Analysis of Elastic Stress Wave Propagation in Stepped Bars, Transmission, Reflection, and Interaction: Experimental Investigation." Jordan Journal of Mechanical & Industrial Engineering, vol. 16(2), 2022.
[19] Valsa, J. and Bran?ik, L. "Approximate formulae for numerical inversion of Laplace transforms." International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 11(3), pp. 153-166, 1998.
[20] Kolsky, H. "An investigation of the mechanical properties of materials at very high rates of loading." Proceedings of the physical society. Section B, vol. 62(11), pp. 676–700, 1949.
[21] Albertini, C., Boone, P.M. and Montagnani, M. "Development of the Hopkinson bar for testing large specimens in tension." Le Journal de Physique Colloques, vol. 46(C5), pp. C5-499, 1985.
[22] Nemat-Nasser, S., Isaacs, J.B. and Starrett, J.E. "Hopkinson techniques for dynamic recovery experiments." Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, vol. 435(1894), pp. 371-391, 1991.
[23] Al-Mousawi, M.M., Reid, S.R. and Deans, W.F. "The use of the split Hopkinson pressure bar techniques in high strain rate materials testing." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 211(4), pp. 273-292, 1997.
[24] Verleysen, P. and Degrieck, J. "Experimental investigation of the deformation of Hopkinson bar specimens." International journal of impact engineering, vol. 30(3), pp. 239-253, 2004.
[25] Gama, B.A., Lopatnikov, S.L. and Gillespie Jr, J.W. "Hopkinson bar experimental technique: a critical review." Appl. Mech. Rev., vol. 57(4), pp. 223-250, 2004.
[26] Yang, L.M. and Shim, V.P.W. "An analysis of stress uniformity in split Hopkinson bar test specimens." International Journal of Impact Engineering, vol. 31(2), pp. 129-150, 2005.
[27] Kolsky, H. "Stress waves in solids." Journal of Sound and Vibration, vol. 1(1), pp. 88-110, 1964.
[28] Siviour, C. R. "A measurement of wave propagation in the split Hopkinson pressure bar." Measurement Science and Technology, vol. 20(6), pp. 065702, 2009.
[29] Othman, R., editor. The Kolsky-Hopkinson bar machine: selected topics. Springer, 2018.
[30] Khosravani, M.R. and Weinberg, K. "A review on split Hopkinson bar experiments on the dynamic characterisation of concrete." Construction and Building Materials, vol. 190, pp. 1264-1283, 2018.
[31] Majzoobi, G.H., Rahmani, K. and Lahmi, S. "Determination of length to diameter ratio of the bars in torsional Split Hopkinson bar." Measurement, vol. 143, pp. 144-154, 2019.
[32] Shin, H. and Kim, J.B. "Evolution of specimen strain rate in split Hopkinson bar test." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 233(13), pp. 4667-4687, 2019.
[33] Maassen, S.F., Niekamp, R., Bergmann, J.A., Pohl, F., Schroder, J. and Wiederkehr, P. "Modeling of the Split-Hopkinson-Pressure-Bar experiment with the explicit material point method." Computational Particle Mechanics, pp. 1-14, 2021.
[34] Miyambo, M.E., Von Kallon, D.V., Pandelani, T. and Reinecke, J.D. "Review of the development of the split Hopkinson pressure bar." Procedia CIRP, vol. 119, pp. 800-808, 2023.
[35] Shin, H. "Sound speed and Poisson’s ratio calibration of (split) Hopkinson bar via iterative dispersion correction of elastic wave." Journal of Applied Mechanics, vol. 89(6), pp. 061007, 2022.
[36] American Concrete Institute (ACI). "Corrosion and repair of unbonded single strand tendons.", ACI, pp. 1-20, 1998.
[37] Salas, R.M., Schokker, A.J., West, J.S., Breen, J.E. and Kreger, M.E. "Corrosion risk of bonded, post-tensioned concrete elements." Pci journal, vol. 53(1), pp. 89, 2008.
[38] Xu, J. and Chen, W. "Behavior of wires in parallel wire stayed cable under general corrosion effects." Journal of Constructional Steel Research, vol. 85, pp. 40-47, 2013.
[39] Carsana, M. and Bertolini, L. "Corrosion failure of post-tensioning tendons in alkaline and chloride-free segregated grout: a case study." Structure and Infrastructure Engineering, vol. 11(3), pp. 402-411, 2015.
[40] Ebeling, R.M., White, B.C., Evans, J.A., Haskins, R.W. and Miller, E.L. Corrosion induced loss of capacity of post-tensioned seven wire strand cable used in multistrand anchor systems installed at corps projects. US Army Engineer Research and Development Center, Information Technology Laboratory, 2016.
[41] Miller, E.L., White, B.C., Haskins, R.W., Ebeling, R.M. and Evans, J.A. "An investigation of corrosion mitigation strategies for aging post-tensioned cables.", US Army Engineer Research and Development Center, Information Technology Laboratory, 2017.
[42] Lan, C., Xu, Y., Liu, C., Li, H. and Spencer Jr, B.F. "Fatigue life prediction for parallel-wire stay cables considering corrosion effects." International Journal of Fatigue, vol. 114, pp. 81-91, 2018.
[43] Wu, S., Chen, H., Ramandi, H.L., Hagan, P.C., Hebblewhite, B., Crosky, A. and Saydam, S. "Investigation of cable bolts for stress corrosion cracking failure." Construction and Building Materials, vol. 187, pp. 1224-1231, 2018.
[44] Wang, Y., Zheng, Y.Q., Zhang, W.H. and Lu, Q.R. "Analysis on damage evolution and corrosion fatigue performance of high-strength steel wire for bridge cable: Experiments and numerical simulation." Theoretical and Applied Fracture Mechanics, vol. 107, pp. 102571, 2020.
[45] Yin, T., Sun, X., Wang, Y., Zhao, Y., Wang, S., Liu, L. and Chen, H. "Corrosion characteristics of anchor cables in electrolytic corrosion test and the applicability of the test method in study of anchor cable corrosion." Advances in Civil Engineering, vol. 2021 (1), pp. 6695288, 2021.
[46] Hollkamp, J.P., Sen, M. and Semperlotti, F. "Analysis of dispersion and propagation properties in a periodic rod using a space-fractional wave equation." Journal of Sound and Vibration, vol. 441, pp. 204-220, 2019.
[47] Yang, K. "A unified solution for longitudinal wave propagation in an elastic rod." Journal of Sound and Vibration, vol. 314(1-2), pp. 307-329, 2008.
[48] Hull, A.J. "A closed form solution of a longitudinal bar with a viscous boundary condition." Journal of Sound and Vibration, vol. 169, pp. 19-19, 1994.
[49] Wheeler, G.F. and Crummett, W.P. "The vibrating string controversy." American Journal of Physics, vol. 55(1), pp. 33-37, 1987.
[50] Sirota, L. and Halevi, Y. "Extended D′Alembert solution of finite length second order flexible structures with damped boundaries." Mechanical Systems and Signal Processing, vol. 39(1-2), pp. 47-58, 2013.
[51] Tanaka, K., Kurokawa, T. and Ueda, K. "Plastic stress wave propagation in a circular bar induced by a longitudinal impact." Macro-and Micro-Mechanics of High Velocity Deformation and Fracture: IUTAM Symposium on MMMHVDF Tokyo, Japan, pp. 317-326, 1985.
[52] Gopalakrishnan, S. "A deep rod finite element for structural dynamics and wave propagation problems." International Journal for numerical methods in Engineering, vol. 48(5), pp. 731-744, 2000.
[53] Grote, M.J., Schneebeli, A. and Schotzau, D. "Discontinuous Galerkin finite element method for the wave equation." SIAM Journal on Numerical Analysis, vol. 44(6), pp. 2408-2431, 2006.
[54] Ramirez, H. and Rubio-Gonzalez, C. "Finite-element simulation of wave propagation and dispersion in Hopkinson bar test." Materials & design, vol. 27(1), pp. 36-44, 2006.
[55] Idesman, A.V., Subramanian, K., Schmidt, M., Foley, J.R., Tu, Y. and Sierakowski, R.L. "Finite element simulation of wave propagation in an axisymmetric bar." Journal of sound and vibration, vol. 329(14), pp. 2851-2872, 2010.
[56] Keramat, A. and Ahmadi, A. "Axial wave propagation in viscoelastic bars using a new finite-element-based method." Journal of Engineering Mathematics, vol. 77(1), pp. 105-117, 2012.
[57] Steinbach, O. and Zank, M. "A stabilized space–time finite element method for the wave equation." Advanced Finite Element Methods with Applications: Selected Papers from the 30th Chemnitz Finite Element Symposium 2017, Springer International Publishing, pp. 341-370, 2019.
[58] Mirzajani, M., Khaji, N. and Hori, M. "Stress wave propagation analysis in one-dimensional micropolar rods with variable cross-section using micropolar wave finite element method." International Journal of Applied Mechanics, vol. 10(04), pp. 1850039, 2018.
[59] Lu, T. and Legrand, M. "Nonsmooth modal analysis via the boundary element method for one-dimensional bar systems." Nonlinear Dynamics, pp. 1-20, 2021.
[60] Aral, M.M. and Gulcat, U. "A finite element Laplace transform solution technique for the wave equation." International Journal for Numerical Methods in Engineering, vol. 11(11), pp. 1719-1732, 1977.
[61] Davies, A. "The solution of differential equations using numerical Laplace transforms." International Journal of Mathematical Education in Science and Technology, vol. 30(1), pp. 65-79, 1999.
[62] Agrawal, O.P. "Solution for a fractional diffusion-wave equation defined in a bounded domain." Nonlinear Dynamics, vol. 29, pp. 145-155, 2002.
[63] Agrawal, O.P. "A general solution for a fourth-order fractional diffusion–wave equation defined in a bounded domain." Computers & Structures, vol. 79(16), pp. 1497-1501, 2001.
[64] Huynh, D.P., Knezevic, D.J. and Patera, A.T. Patera. "A Laplace transform certified reduced basis method; application to the heat equation and wave equation." Comptes Rendus. Mathematique, vol. 349(7-8), pp. 401-405, 2011.
[65] Jafari, H., Khalique, C.M. and Nazari, M. "Application of the Laplace decomposition method for solving linear and nonlinear fractional diffusion–wave equations." Applied Mathematics Letters, vol. 24(11), pp. 1799-1805, 2011.
[66] Schiff, J.L. The Laplace transform: theory and applications. Springer Science & Business Media, 2013.
[67] Zheng, Y. and Zhou, F. "Using Laplace transform to solve the viscoelastic wave problems in the dynamic material property tests." EPJ Web of Conferences, vol. 94, 2015.
[68] Schiff, J. L. The Laplace transform: theory and applications. Springer, Berlin. 1999.
[69] Carrier, G.F., Krook, M. and Pearson, C.E. Functions of a complex variable: theory and technique. Society for Industrial and Applied Mathematics, 2005.
[70] Siauw, T. and Bayen, A. An introduction to MATLABR programming and numerical methods for engineers. Academic Press, 2014.
[71] Esfandiari, R.S. Numerical methods for engineers and scientists using MATLABR. Crc Press, 2017.
[72] Yang, W.Y., Cao, W., Kim, J., Park, K.W., Park, H.H., Joung, J., Ro, J.S., Lee, H.L., Hong, C.H. and Im, T. Applied numerical methods using MATLAB. John Wiley & Sons, 2020.
[73] Dupac, M. and Marghitu, D.B. Engineering Applications: Analytical and Numerical Calculation with MATLAB. John Wiley & Sons, 2021.
[74] Al-Furjan, M.S.H., Bidgoli, M.R., Kolahchi, R., Farrokhian, A. and Bayati, M.R. Application of Numerical Methods in Engineering Problems using MATLABR. CRC Press, 2023.
[75] Juraj, V. "Numerical inversion of Laplace transforms in Matlab." MATLAB Central File ID: # 32824, 2011.
[76] Dassault Systemes. Abaqus Analysis User′s Guide, Volume II: Analysis. Providence, RI, USA, 2016.
[77] Shin, H. and Kim, D. "One-dimensional analyses of striker impact on bar with different general impedance." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 234(2), pp. 589-608, 2020.
[78] Johnson, G.R. "A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures." Proceedings of the 7th International Symposium on Ballistics, The Hague, Netherlands, 1983.
[79] Tanimura, S., Tsuda, T., Abe, A., Hayashi, H. and Jones, N. "Comparison of rate-dependent constitutive models with experimental data." International Journal of Impact Engineering, vol. 69, pp. 104-113, 2014.
[80] Zhao, Y., Sun, J., Li, J., Yan, Y. and Wang, P. "A comparative study on Johnson-Cook and modified Johnson-Cook constitutive material model to predict the dynamic behavior laser additive manufacturing FeCr alloy." Journal of Alloys and Compounds, vol. 723, pp. 179-187, 2017.
[81] Jang, T.J., Yoon, J.W. and Kim, J.B. "Determination of Johnson-Cook constitutive model coefficients considering initial gap between contact faces in SHPB test." Journal of Materials Research and Technology, vol. 24, pp. 7242-7257, 2023.
[82] Chen, G., Ke, Z., Ren, C. and Li, J. "Constitutive modeling for Ti-6Al-4V alloy machining based on the SHPB tests and simulation." Chinese Journal of Mechanical Engineering, vol. 29(5), pp. 962-970, 2016.
[83] Tang, W., Liu, C. and Zhang, K. "The Johnson-Cook Constitutive Model of TA19 Titanium Alloy." Journal of Physics: Conference Series, vol. 2557(1), pp. 012041, 2023. |