參考文獻 |
1. M. Slomski, Thermal Conductivity of Group-III Nitrides and Oxides. doctoral dissertation,
North Carolina State University (2017).
2. S. Strite and H. Morkoc, GaN, AIN, and InN: A review. J. Vac. Sci. Technol. B 10(4), (1992)
1237-1266.
3. R. F. Davis, M. J. Paisley, Z. Sitar, D. J. Kester, K. S. Ailey, and C. Wang, Deposition of IIIN thin films by molecular beam epitaxy. J. Microelectron. 25 (1994) 661-674.
4. H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Metalorganic vapor phase epitaxial
growth of a high quality GaN film using an AIN buffer layer. Appl. Phys. Lett. 48 (1986)
353-355.
5. S. Zamir, B. Meyler, E. Zolotoyabko, and J. Salzman, The effect of AlN buffer layer on
GaN grown on (1 1 1)-oriented Si substrates by MOCVD. J. Crystal Growth 218 (2000)
181-190.
6. S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, and
T. J. Jenkins, High-Power Microwave GaN/AlGaN HEMT’s on Semi-Insulating Silicon
Carbide Substrates. IEEEIEEE ELECTRON DEVICE LETTERS 20 (1999)161-163.
7. M. A. Mastro, C. R. Eddy Jr., D. K. Gaskill, N. D. Bassim, J. Casey, A. Rosenberg, R. T.
Holm, R. L. Henry, and M. E. Twigg, MOCVD growth of thick AlN and AlGaN superlattice
structures on Si substrates. J. Crystal Growth 287 (2006) 610–614.
8. D. Liu, S. J. Cho, J. Park, J. Gong, J-H Seo, R. Dalmau, D. Zhao, K. Kim, M. Kim, A. R.
K. Kalapala, J. D. Albrecht, W. Zhou, B. Moody, and Z. Ma1, 226 nm AlGaN/AlN UV
LEDs using p-type Si for hole injection and UV reflection. Appl. Phys. Lett. 113 (2018)
011111.
9. M. Ichikawa, A. Fujioka, T. Kosugi, S. Endo, H. Sagawa, H. Tamaki, T. Mukai, M. Uomoto,
58
and T. Shimatsu, High-output-power deep ultraviolet light-emitting diode assembly using
direct bonding. Appl. Phys. Express 9 (2016) 072101.
10. N. Yafune, S. Hashimoto, K. Akita, Y. Yamamoto, H. Tokuda and M. Kuzuhara, AlN/AlGaN
HEMTs on AlN substrate for stable high-temperature operation. ELECTRONICS
LETTERS 30th 50 (2014) 211–212.
11. O. Kovalenkov, V. Soukhoveev, V. Ivantsov, A. Usikov, and V. Dmitriev, Thick AlN layers
grown by HVPE. J. Crystal Growth 281 (2005) 87–92.
12. A. Kakanakova-Georgieva, R. R. Ciechonski, U. Forsberg, A. Lundskog, and E. Janzén,
Hot-Wall MOCVD for Highly Efficient and Uniform Growth of AlN. Cryst. Growth Des.
Vol. 9, No. 2, (2009) 880-884.
13. V. G. Mansurov, A. Yu. Nikitin, Yu. G. Galitsyn, S. N. Svitasheva, K. S. Zhuravlev, Z.
Osvath, L. Dobos, Z. E. Horvath, and B. Pecz, AlN growth on sapphire substrate by
ammonia MBE. J. Crystal Growth 300 (2007) 145–150.
14. H. M. Manasevit, F. M. Erdmann, and W. I. Simpson, The Use of Metalorganics in the
Preparation of Semiconductor Materials: IV . The Nitrides of Aluminum and Gallium. J.
Electrochem. Soc. Vol. 118, No. 11(1971) 1864-1867.
15. S. Nakamura, Y. Harada, and M. Seno, Novel metalorganic chemical vapor deposition
system for GaN growth. Appl. Phys. Lett. 58 (1991) 2021-2023.
16. T. G. Mihopoulos, V. Gupta, K. F. Jensen, A reaction-transport model for AlGaN MOVPE
growth. J. Crystal Growth 195 (1998) 733-739.
17. D.G. Zhao, J.J. Zhu, D.S. Jiang, Hui Yang, J.W. Liang, X.Y. Li, and H.M. Gong, Parasitic
reaction and its effect on the growth rate of AlN by metalorganic chemical vapor deposition.
J. Crystal Growth 289 (2006) 72–75.
18. L. Tang, R. Zuo, H. Zhang, Quantum chemical study on nanoparticles formation mechanism
n AlGaN MOCVD growth. J. Crystal Growth 525 (2019) 125201.
19. J. An, X. Dai, Q. Zhang, R. Guo, and L. Feng, Gas-phase chemical reaction mechanism in
59
the growth of AlN during High-Temperature MOCVD: A Thermodynamic Study. ACS
Omega 5 (2020) 11792-11798.
20. Y. Inagakiz and T. Kozawa, Chemical reaction pathways for MOVPE growth of aluminum
nitride. ECS Journal of Solid State Science and Technology, 5 (2) (2016) 73-75.
21. I. Demir, H. Li, Y. Robin, R. McClintock, S. Elagoz, and M. Razeghi, Sandwich method to
grow high quality AlN by MOCVD. J. Phys. Appl. Phys. 51 (2018) 085104.
22. İ. Demir, Y. Robin, R. McClintock, S. Elagoz, K. Zekentes, and M. Razeghi, Direct growth
of thick AlN layers on nanopatterned Si substrates by cantilever epitaxy. Phys. Status Solidi
(A) 214 (2017) 1600363.
23. L. W. Sang, Z. X. Qin, H. Fang, T. Dai, Z. J. Yang, B. Shen, G. Y. Zhang, X. P. Zhang, J.
Xu, and D. P. Yu, Reduction in threading dislocation densities in AlN epilayer by
introducing a pulsed atomic-layer epitaxial buffer layer. Appl. Phys. Lett. 93 (2008) 122104.
24. R. S. Qhalid Fareed, R. Jain, R. Gaska, and M. S. Shur, High quality InN/GaN
heterostructures grown by migration enhanced metalorganic chemical vapor deposition.
Appl. Phys. Lett. 84 (2004) 1892.
25. R. S. Qhalid Fareed, J. P. Zhang, R. Gaska, G. Tamulaitis, J. Mickevicius, R. Aleksiejunas,
M. S. Shur, and M. A. Khan, Migration enhanced MOCVD (MEMOCVDTM) buffers for
increased carrier lifetime in GaN and AlGaN epilayerson sapphire and SiC substrate. phys.
stat. sol. (c) 2, No. 7 (2005) 2095–2098.
26. Y. Chen, H. Song, D. Li, X. Sun, H. Jiang, Z. Li, G. Miao, Z. Zhang, and Y. Zhou, Influence
of the growth temperature of AlN nucleation layer on AlN template grown by hightemperature MOCVD. Materials Letters 114 (2014) 26–28.
27. H. Kröncke, S. Figge, T. Aschenbrenner, and D. Hommel, Growth of AlN by pulsed and
conventional MOVPE. J. Cryst. Growth 381 (2013) 100–106.
28. I. Streicher, S. Leone, L. Kirste, and O. Ambacher, Effect of V/III ratio and growth pressure
on surface and crystal quality of AlN grown on sapphire by metal-organic chemical vapor
60
deposition. J. Vac. Sci. Technol. A 40 (2022) 032702.
29. A.V. Lobanova, E.V. Yakovlev, R.A Talalaev, S.B. Thapa, F. Scholz, Growth conditions and
surface morphology of AlN MOVPE. J. Crystal Growth 310 (2008) 4935–4938.
30. W. Luo, L. Li, Z. Li, Q. Yang, D. Zhang, X. Dong, D. Peng, L. Pan, C. Li, B. Liu, and R.
Zhong, Influence of the nucleation layer morphology on the structural property of AlN films
grown on c-plane sapphire by MOCVD. J. Alloys and Compounds 697 (2017) 262-267.
31. J-S Yang, H. Sodabanlu, I. Waki, M. Sugiyama, Y. Nakano, and Y. Shimogaki, Process
design of the pulse injection method for low-temperature metal organic vapor phase
epitaxial growth of AlN at 800°C. J. Crystal Growth 311 (2009) 383-388.
32. K. Nakamura, A. Hirako, and K. Ohkawa, Analysis of pulsed injection of precursors in AlNMOVPE growth by computational fluid simulation. Phys. Status Solidi C 7, No. 7–8, (2010)
2268–2271.
33. D. Endres, S. Mazumder, Numerical investigation of pulsed chemical vapor deposition of
aluminum nitride to reduce particle formation. J. Crystal Growth 335 (2011) 42–50.
34. C. H. Chen, H. Liu, D. Steigerwald, W. Imler, C. P. Kuo, M. G. Craford, M. Ludowise, S.
Lester, and J. Amano, A study of parasitic reactions between NH3 and TMGa or TMAI.
Journal of Electronic Materials 25 (1996) 1004–1008.
35. P.D. Neufeld, A.R. Jenzen, R.A. Aziz, Empirical equation to calculate 16 of the transport
collision integrals Ω for the Lennard-Jones (12-6) potential, J. Chem. Phys. 57 (1972) 1100–
1102.
36. R.S. Brokaw, Predicting transport properties of dilute gases, Ind. Eng. Process Design
Develop 8 (1969) 240–253.
37. Computational fluid dynamics ACE+ suite, ESI Group, https://www.esi-group.com/
38. T.J. Mountziaris, K.F. Jensen, Gas-phase and surface reaction mechanisms in MOCVD of
GaAs with trimethyl-gallium and arsine, J. Electrochem. Soc. 138, No.8, (1991) 2426–2439.
39. A.V. Lobanova, K. M. Mazaev, R. A. Talalaev, M. Leys, S. Boeykens, K. Cheng, and S.
61
Degroote, Effect of V/III ratio in AlN and AlGaN MOVPE. J. Crystal Growth 287 (2006)
601-604.
40. F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Fundamentals of Heat and
Mass Transfer, 6th ed., John Wiley & Sons, (2006).
41. COMSOL Multiphysics® www.comsol.com. COMSOL AB, Stockholm, Sweden |