參考文獻 |
[1] Kishi, H., Mizuno, Y., & Chazono, H. (2003). Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives. Japanese journal of applied physics, 42(1R), 1.
[2] Kasap, S., & Capper, P. (Eds.). (2017). Springer handbook of electronic and photonic materials. Springer.
[3] Rane, S., & Puri, V. (2001). Thick film dielectric overlay effects on thin and thick film microstrip bandpass filter. Microelectronics journal, 32(8), 649-654.
[4] Wang, Y., Zhang, G., & Ma, J. (2002). Research of LTCC/Cu, Ag multilayer substrate in microelectronic packaging. Materials Science and Engineering: B, 94(1), 48-53.
[5] Blank, T., Leyrer, B., Maurer, T., Meisser, M., Bruns, M., & Weber, M. (2014, September). Copper thick-film substrates for power electronic applications. In Proceedings of the 5th Electronics System-integration Technology Conference (ESTC) (pp. 1-6). IEEE.
[6] White, N. (2017). Thick films. In Springer Handbook of Electronic and Photonic Materials (pp. 1-1). Springer, Cham.
[7] Songping, W., Li, J., Jing, N., Zhenou, Z., & Song, L. (2007). Preparation of ultra fine copper–nickel bimetallic powders for conductive thick film. Intermetallics, 15(10), 1316-1321.
[8] Hlina, J., Reboun, J., Hirman, M., & Hamacek, A. (2017, May). Comparison of copper and silver thick film on alumina substrates properties. In 2017 40th International Spring Seminar on Electronics Technology (ISSE) (pp. 1-5). IEEE.
[9] Reboun, J., Hlina, J., Totzauer, P., & Hamacek, A. (2018). Effect of copper-and silver-based films on alumina substrate electrical properties. Ceramics International, 44(3), 3497-3500.
[10] Yang, W., Sun, Q., Lei, Q., Zhu, W., Li, Y., Wei, J., & Li, M. (2019). Formation of a highly conductive thick film by low-temperature sintering of silver paste containing a Bi2O3-B2O3-ZnO glass frit. Journal of Materials Processing Technology, 267, 61-67.
[11] Bittner, A., Pagel, N., Seidel, H., & Schmid, U. (2012). Long-term stability of Ag and Cu thin films on glass, LTCC and alumina substrates. Microsystem technologies, 18(7-8), 879-884.
[12] Park, S., Seo, D., & Lee, J. (2008). Preparation of Pb-free silver paste containing nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 313, 197-201.
[13] Park, K., Seo, D., & Lee, J. (2008). Conductivity of silver paste prepared from nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 313, 351-354.
[14] Kargin, Y. F., Zhereb, V. P., & Egorysheva, A. V. (2002). Metastable Phase Diagram for the Bi2O3-B2O3 System. Russian Journal Of Inorganic Chemistry, 47(8), 1240-1242.
[15] Mahapatra, M. K., & Lu, K. (2010). Glass-based seals for solid oxide fuel and electrolyzer cells–a review. Materials Science and Engineering: R: Reports, 67(5-6), 65-85.
[16] Maeder, T. (2013). Review of Bi2O3 based glasses for electronics and related applications. International Materials Reviews, 58(1), 3-40.
[17] Cheng, Y., Xiao, H., Guo, W., & Guo, W. (2006). Structure and crystallization kinetics of Bi2O3–B2O3 glasses. Thermochimica Acta, 444(2), 173-178.
[18] HWANG, C., FUJINO, S., & MORINAGA, K. (2004). Surface Tension of Bi2O3-B2O3 Binary Glass Melts. In Journal of the Ceramic Society of Japan, Supplement Journal of the Ceramic Society of Japan, Supplement 112-1, PacRim5 Special Issue (pp. S1200-S1205). The Ceramic Society of Japan.
[19] Qiao, W., & Chen, P. (2010). Study on the properties of Bi2O3-B2O3-BaO lead-free glass using in the electronic pastes. Glass Physics and Chemistry, 36(3), 304-308.
[20] Becker, P. (2003). Thermal and optical properties of glasses of the system Bi2O3–B2O3. Crystal Research and Technology: Journal of Experimental and Industrial Crystallography, 38(1), 74-82.
[21] Fujino, S., Hwang, C., & Morinaga, K. (2005). Surface tension of PbO-B2O3 and Bi2O3-B2O3 glass melts. Journal of materials science, 40(9-10), 2207-2212.
[22] Bale, S., Rahman, S., Awasthi, A. M., & Sathe, V. (2008). Role of Bi2O3 content on physical, optical and vibrational studies in Bi2O3–ZnO–B2O3 glasses. Journal of Alloys and Compounds, 460(1-2), 699-703.
[23] He, F., Wang, J., & Deng, D. (2011). Effect of Bi2O3 on structure and wetting studies of Bi2O3–ZnO–B2O3 glasses. Journal of alloys and compounds, 509(21), 6332-6336.
[24] He, F., Cheng, J. S., Deng, D. W., & Wang, J. (2010). Structure of Bi2O3-ZnO-B2 O3 system low-melting sealing glass. journal of central south university of technology, 17(2), 257-262.
[25] Ehrt, D., & Flügel, S. (2011). Properties of zinc silicate glasses and melts. Journal of Materials Science and Engineering. A, 1(3A), 312.
[26] Lim, E. S., Kim, B. S., Lee, J. H., & Kim, J. J. (2007). Characterization of the low temperature firing BaO–B2O3–SiO2 glass: The effect of BaO content. Journal of the European Ceramic Society, 27(2-3), 825-829.
[27] Li, M., Wang, M., Wang, M. T., Hao, M. R., Liu, Z. G., Hu, Y. H., & Yue, P. (2013). Study on the ZnO-B2O3-SiO2 Glass-ceramic with DTA, XRD and SEM. In Advanced Materials Research (Vol. 683, pp. 42-45). Trans Tech Publications Ltd.
[28] Liu, Y., Deng, D., Wang, H., Zhao, S., & Xu, S. (2012). Effect of Oxides Additive on Properties and Structure of Low-Melting Sealing Bi2O3–B2O2–ZnO Glasses. Journal of The Chinese Ceramic Society, 40(10), 1409-1414.
[29] Arora, A., Shaaban, E. R., Singh, K., & Pandey, O. P. (2008). Non-isothermal crystallization kinetics of ZnO–BaO–B2O3–SiO2 glass. Journal of non-crystalline solids, 354(33), 3944-3951.
[30] Dyamant, I., Itzhak, D., & Hormadaly, J. (2005). Thermal properties and glass formation in the SiO2–B2O3–Bi2O3–ZnO quaternary system. Journal of non-crystalline solids, 351(43-45), 3503-3507.
[31] Jeong, S. J., Kim, M. S., Kim, I. S., & Lee, D. S. (2011). Characterization of Borosilicate Glass‐Coated Cu Electrode for Internal Electrode of Multilayer Ceramic Device. International Journal of Applied Ceramic Technology, 8(5), 1173-1182.
[32] Dong, Q., Huang, C., Duan, G., & Zhang, F. (2017). Facile synthesis and electrical performance of silica-coated copper powder for copper electronic pastes on low temperature co-fired ceramic. Materials Letters, 186, 263-266.
[33] Chen, J., Yang, D. A., Zhai, T., Gui, B., & Wang, Q. (2016). Influence of B 2 O 3–SiO 2–ZnO–BaO glass ratio and sintering temperature on the microstructure and property of copper thick film for low temperature co-fired ceramic. Journal of Materials Science: Materials in Electronics, 27(2), 1929-1937.
[34] Zhang, F., Duan, G., Cao, L., Yang, D. A., & Liu, Z. (2018). Preparation and properties of antioxidative BaO–B 2 O 3–SiO 2 glass-coated Cu powder for copper conductive film on LTCC substrate. Journal of Materials Science: Materials in Electronics, 29(1), 130-137.
[35] Ayyappan, S., Gopalan, R. S., Subbanna, G. N., & Rao, C. N. R. (1997). Nanoparticles of Ag, Au, Pd, and Cu produced by alcohol reduction of the salts.
[36] Nakamura, T., Tsukahara, Y., Sakata, T., Mori, H., Kanbe, Y., Bessho, H., & Wada, Y. (2007). Preparation of monodispersed Cu nanoparticles by microwave-assisted alcohol reduction. Bulletin of the Chemical Society of Japan, 80(1), 224-232.
[37] Kurihara, Y., Takahashi, S., Yamada, K., & Endoh, T. (1990). Ag-Pd thick film conductor for AlN ceramics. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 13(2), 306-312.
[38] Xu, X., Zhuang, H., Li, W., & Jiang, G. (2004). Bonding behavior of copper thick films containing lead-free glass frit on aluminum nitride substrates. Ceramics international, 30(5), 661-665.
[39] Lee, S. J., Kriven, W. M., Park, J. H., & Yoon, Y. S. (1997). Bonding behavior of Cu/CuO thick film on a low-firing ceramic substrate. Journal of materials research, 12(9), 2411-2418.
[40] Yi, J. H., Koo, H. Y., Kim, J. H., Ko, Y. N., Kang, Y. C., Lee, H. M., & Yun, J. Y. (2010). Fine size Pb-based glass frit with spherical shape as the inorganic binder of Al electrode for Si solar cells. Journal of alloys and compounds, 490(1-2), 488-492.
[41] Yi, J. H., Koo, H. Y., Kim, J. H., Ko, Y. N., Hong, Y. J., Kang, Y. C., & Lee, H. M. (2011). Pb-free glass frits prepared by spray pyrolysis as inorganic binders of Al electrodes in Si solar cells. Journal of alloys and compounds, 509(21), 6325-6331.
[42] Jung, D. S., Koo, H. Y., & Kang, Y. C. (2009). The effects of glass powders prepared by spray pyrolysis on the structures and conductivities of silver electrode. Materials Chemistry and Physics, 118(1), 25-31.
[43] Hong, Y. J., Jung, D. S., Koo, H. Y., Kim, J. H., Ko, Y. N., & Kang, Y. C. (2011). Characteristics of ZnO–B2O3–SiO2–CaO glass frits prepared by spray pyrolysis as inorganic binder for Cu electrode. Journal of alloys and compounds, 509(31), 8077-8081.
[44] Kuromitsu, Y., Yoshida, H., Takebe, H., & Morinaga, K. (1997). Interaction between alumina and binary glasses. Journal of the American Ceramic Society, 80(6), 1583-1587.
[45] Marcinkowski, M., Schmidt, R., Eberstein, M., & Partsch, U. (2017, June). Sinter kinetics and interface reactions of silver thick films on aluminium nitride. In 2017 IMAPS Nordic Conference on Microelectronics Packaging (NordPac) (pp. 157-161). IEEE.
[46] Wu, S. (2007). Preparation of ultra-fine copper powder and its lead-free conductive thick film. Materials Letters, 61(16), 3526-3530.
[47] German, R. M., Suri, P., & Park, S. J. (2009). Review: liquid phase sintering. J. Mater. Sci, 44(1), 1-39.
[48] Zuo, R., Li, L., Gui, Z., Hu, X., & Ji, C. (2002). Effects of Additives on the Interfacial Microstructure of Cofired Electrode‐Ceramic Multilayer Systems. Journal of the American Ceramic Society, 85(4), 787-793.
[49] Ko, Y. N., Koo, H. Y., Yi, J. H., Kim, J. H., & Kang, Y. C. (2010). Characteristics of Pb-based glass frit prepared by spray pyrolysis as the inorganic binder of silver electrode for Si solar cells. Journal of alloys and compounds, 490(1-2), 582-588.
[50] Akhtar, M., & Anklekar, R. M. (2004). Characterization of copper pastes for end termination application of base metal electrode MLCCs. Microelectronics international.
[51] Sakaue, T., & Yoshimaru, K. (2003). Copper powder for termination electrode in MLCC. Journal of the Japan Society of Powder and Powder Metallurgy, 50(11), 908-911.
[52] Wu, S., Qin, H., & Li, P. (2006). Preparation of fine copper powders and their application in BME-MLCC. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material, 13(3), 250-255.
[53] Paik, U., Kang, K. M., Jung, Y. G., & Kim, J. (2003). Binder removal and microstructure with burnout conditions in BaTiO3 based Ni-MLCCs. Ceramics international, 29(8), 939-946.
[54] Yoon, J. R., Shin, D. S., Jeong, D. Y., & Lee, H. Y. (2012). Control of connectivity of Ni electrode with heating rates during sintering and electrical properties in BaTiO 3 based multilayer ceramic capacitors. Transactions on electrical and electronic materials, 13(4), 181-184.
[55] Polotai, A. V., Fujii, I., Shay, D. P., Yang, G. Y., Dickey, E. C., & Randall, C. A. (2008). Effect of heating rates during sintering on the electrical properties of ultra‐thin Ni–BaTiO3 multilayer ceramic capacitors. Journal of the American Ceramic Society, 91(8), 2540-2544.
[56] Pieczonka, T., Kazior, J., & Laska, M. (2018). The effect of nitrogen flow rate on Acrawax C decomposition and its removal during sintering of Alumix 431D grade powder. Powder Metallurgy, 61(2), 149-156.
[57] Chung, Y. S., & Kim, H. G. (1988). Effect of oxide glass on the sintering behavior and electrical properties in Ag thick films. IEEE transactions on components, hybrids, and manufacturing technology, 11(2), 195-199.
[58] Ketkar, S. A., Umarji, G. G., Phatak, G. J., Seth, T., Mulik, U. P., & Amalnerkar, D. P. (2006). Glass frit content—Property co-relation in thick films of photoimageable silver conductor paste. Materials Science and Engineering: B, 132(1-2), 197-203.
[59] Seo, D. S., Park, S. H., & Lee, J. K. (2009). Sinterability and conductivity of silver paste with Pb-free frit. Current Applied Physics, 9(1), S72-S74.
[60] Hsiang, H. I., Fan, L. F., & Cheng, H. Y. (2015). Silver end termination paste preparation for chip inductor applications. Journal of Alloys and Compounds, 650, 835-843.
[61] Xiaoqiang, M. A., Xiaoyun, Z. H. U., Jinming, L. O. N. G., & Mei, C. A. O. (2017). Effect of Glass Powder on Performance of Copper Conductor Film Prepared via Sintering Cu-glass Paste. Chinese Journal of Materials Research, 31(6), 472-480.
[62] Rane, S. B., Seth, T., Phatak, G. J., Amalnerkar, D. P., & Ghatpande, M. (2004). Effect of inorganic binders on the properties of silver thick films. Journal of Materials Science: Materials in Electronics, 15(2), 103-106.
[63] Lee, Y. I., & Choa, Y. H. (2012). Adhesion enhancement of ink-jet printed conductive copper patterns on a flexible substrate. Journal of Materials Chemistry, 22(25), 12517-12522.
[64] Jin, Y., Bernacki, M., Agnoli, A., Lin, B., Rohrer, G. S., Rollett, A. D., & Bozzolo, N. (2016). Evolution of the annealing twin density during δ-supersolvus grain growth in the nickel-based superalloy Inconel™ 718. Metals, 6(1), 5.
[65] Fullman, R. L., & Fisher, J. C. (1951). Formation of annealing twins during grain growth. Journal of Applied Physics, 22(11), 1350-1355.
[66] Pande, C. S., Imam, M. A., & Rath, B. B. (1990). Study of annealing twins in FCC metals and alloys. Metallurgical transactions A, 21(11), 2891-2896.
[67] Lu, L., Shen, Y., Chen, X., Qian, L., & Lu, K. (2004). Ultrahigh strength and high electrical conductivity in copper. Science, 304(5669), 422-426.
[68] Guo, W., Lin, T., Wang, T., He, P., Sekulic, D. P., & Guo, S. (2017). Microstructure evolution during air bonding of Al2O3 to Al2O3 joints using bismuth–borate–zinc glass. Journal of the European Ceramic Society, 37(13), 4015-4023.
[69] Sun, Q., Yang, W., Liu, Y., Li, Y., & Li, M. (2019). Microstructure and mechanical properties of tempered glass joint bonded with Bi-B-Zn low melting glass. Journal of Materials Processing Technology, 271, 404-412.
[70] Chen, J., Li, Y., Miao, W., Mai, C., & Li, M. (2018). Bonding Cu to Al 2 O 3 with Bi-B-Zn Oxide Glass Via Oxidation–Reduction Reaction. Journal of Electronic Materials, 47(1), 542-549.
[71] Duffy, J. A. (1996). Redox equilibria in glass. Journal of Non-Crystalline Solids, 196, 45-50.
[72] Khonthon, S., Morimoto, S., Arai, Y., & Ohishi, Y. (2009). Redox equilibrium and NIR luminescence of Bi2O3-containing glasses. Optical Materials, 31(8), 1262-1268.
[73] Wang, X., Fang, Z. Z., & Sohn, H. Y. (2008). Grain growth during the early stage of sintering of nanosized WC–Co powder. International Journal of Refractory Metals and Hard Materials, 26(3), 232-241.
[74] Liu, Y., & Huang, X. (2006). Liquid-phase-sintering of alumina ceramics and sintering kinetic analysis. JOURNAL-CHINESE CERAMIC SOCIETY, 34(6), 647.
[75] Banerjee, S., & Paul, A. (1974). Thermodynamics of the System Cu‐O and Ruby Formation in Borate Glass. Journal of the American Ceramic Society, 57(7), 286-290.
[76] Lazzari, S., Nicoud, L., Jaquet, B., Lattuada, M., & Morbidelli, M. (2016). Fractal-like structures in colloid science. Advances in colloid and interface science, 235, 1-13.
[77] Koo, J. B., & Yoon, D. Y. (2001). Abnormal grain growth in bulk Cu—The dependence on initial grain size and annealing temperature. Metallurgical and Materials Transactions A, 32(8), 1911-1926.
[78] Koo, J. B., Yoon, D. Y., & Henry, M. F. (2002). The effect of small deformation on abnormal grain growth in bulk Cu. Metallurgical and materials transactions A, 33(12), 3803-3815. |