博碩士論文 107423006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.149.249.140
姓名 黃星豪(Xing-Hao Huang)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 應用機器學習與本體論於案例推論為基的網路謠言辨識
(Identifying Online Rumor Based on Case Reasoning Applying Machine Learning and Ontology)
相關論文
★ 專案管理的溝通關鍵路徑探討─以某企業軟體專案為例★ 運用並探討會議流如何促進敏捷發展過程中團隊溝通與文件化:以T銀行系統開發為例
★ 專案化資訊服務中人力連續派遣決策模式之研究─以高鐵行控資訊設備維護為例★ 以組織正義觀點介入案件指派決策之研究
★ 應用協調理論建立系統軟體測試中問題改善之協作流程★ 應用案例式推理於問題管理系統之研究 -以筆記型電腦產品為例
★ 運用限制理論於多專案開發模式的人力資源配置之探討★ 應用會議流方法於軟體專案開發之個案研究:以翰昇科技公司為例
★ 多重專案、多期再規劃的軟體開發接案決策模式:以南亞科技資訊部門為例★ 會議導向敏捷軟體開發及系統設計:以大學畢業專題為例
★ 一種基於物件、屬性導向之變更影響分析方法於差異化產品設計★ 會議流方法對大學畢業專題的團隊合作品質影響之實驗研究
★ 實施敏捷式發展法於大學部畢業專題之 行動研究 – 以中央大學資管系為例★ 建立一個用來評核自然語言需求品質的線上資訊系統
★ 結合本體論與模糊分析網路程序法於軟體測試之風險與風險關聯辨識★ 在軟體反向工程中針對UML結構模型圖之線上品質評核系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-1以後開放)
摘要(中) 隨著資訊科技和網路的發展,資訊傳播的速度比以往更快且更便利。但人們在傳播資訊時,通常不驗證此資訊的來源和可信度,尤其是在社群媒體平台。如此未經驗證的資訊在網路上流竄稱之為網路謠言(Online rumor)。而現今網路謠言的氾濫,不僅引起社會恐慌,還改變與論方向。為了增加人們對於謠言的認知,在實務上,已有民間組織建立謠言查詢網站,例如Cofacts、Mygopen和蘭姆酒吐司。但這些網站是依靠人工檢查的方式來變是網路謠言,需要大量的人力進行查驗;在學術上,也有許多研究提出深度學習和機器學習的方法,但深度學習的方法若是模型架構過大,則會導致訓練模型的過程耗費時間。而機器學習的方法雖有不錯的準確率,但無法解決語意的問題。此外,若使用者對於模型預測後的結果是有疑慮的,則需要有一套機制能經由過往案例的參考,以推論的方式辨識網路謠言。
因此,本研究應用本體論和機器學習模型,使模型預測的過程能處理語句上反義的關係。此外,本研究結合了基於案例推論,使用者若對預測的結果是有疑慮時,能以半自動的方式進行案例推論,達到網路謠言辨識。結合上述兩點,本研究實做了一套網路謠言辨識系統-MOCIR(Machine learning Ontology Case based reasoning Identify Rumor),以Web-based和Linebot作呈現。而在最後比較既有的機器學習模型和實務界以繁體中文為主的系統之方式來驗證本系統。
摘要(英) With the development of information technology and the Internet, the speed of information spreading has significantly increased, people on social media platforms usually are not able to effectively verify the source and credibility of the information. Unverified information spreading on the Internet was called online rumor. The rumor has become a severe problem, not only caused the social panic, but also changed the direction of public opinion. To increase people′s awareness of rumors, non-governmental organizations have established rumor query websites, such as Cofacts and Mygopen, which rely on manual verification methods on identifying online rumor. In academia, There are many researchers proposed deep learning and machine learning techniques for identifying rumor. However, if the architecture of deep learning model is too large, the process of training would be time-consuming. Although the machine learning model has an excellent accuracy, but it can not solve the sematic problem. In addition, if the user is unacceptable about the prediction results by the model, then a mechanism is needed to identify the online rumors by reasoning method and referring to similar cases.
Therefore, this research applies machine learning techniques and ontology models to predict online rumor and deal with antisense problem. Moreover, if the users do not accept the predicted results, then they could use case-based reasoning in a semi-automatic way to achieve online rumor identification. In conclusion, this research has implemented the proposed methodology into an online rumor identification system, and the users could access our system by website or Linebot. The system was verified by comparing the related machine model and the traditional Chinese-based system in practice.
關鍵字(中) ★ 機器學習
★ 本體論
★ 基於案例推論
★ 網路謠言
★ 社群媒體平台
關鍵字(英) ★ Machine learning
★ Ontology
★ Case-based reasoning
★ Online rumor
★ Social media
論文目次 摘要 v
Abstract vi
圖目錄 x
表目錄 xi
第一章 緒論 1
1.1 研究背景 1
1.2 研究問題與動機 3
1.3 研究目的 4
1.4 研究範圍與假設 6
1.5 研究架構 7
第二章 文獻探討 9
2.1 網路謠言檢測 9
2.1.1 基於機器學習(Machine learning)的方法 9
2.1.2 基於深度學習(Deep learning)的方法 13
2.2 基於案例推論(Case-based reasoning) 14
2.3 本體論(ontology) 17
第三章 系統設計 20
3.1 系統架構 20
3.2 資料蒐集 21
3.3 本體建置 22
3.3.1 建立規則 24
3.4 謠言程度計算和基於案例推論 25
3.4.1 資料前處理(Data Preprocessing) 26
3.4.2 謠言程度計算 (Rumor Level Calculation) 29
3.4.3 案例檢索(Case Retrieval) 31
3.4.4 案例重用(Case Reusing)、案例修正和案例保留(Case Revision & Case Retention) 32
第四章 系統實作與展示 33
4.1 系統開發環境 33
4.2 知識擷取與推論 34
4.3 系統展示 39
4.3.1 以web的方式展示 39
4.3.2 以Linebot的方式展示 46
第五章 系統成果與討論 50
5.1 謠言程度計算驗證 50
5.2 案例檢索驗證 54
5.3 系統比較 58
第六章 結論與未來發展 60
6.1 研究貢獻 60
6.2 研究限制與未來發展 61
參考文獻 63
參考文獻 資策會 (2019) https://www.iii.org.tw/Press/NewsDtl.aspx?nsp_sqno=1934&fm_sqno=14
 Retrieved on 12/25/2019
G0v Inc. (2019) https://cofacts.g0v.tw
 Retrieved on 12/25/2019
Trend Micro Inc.(2020) https://page.line.me/jwv3010k
 Retrieved on 4/5/2020
MGP Fact Check Ltd. (2019) https://www.mygopen.com
 Retrieved on 1/2/2020
蘭姆酒吐司Rumor & Truth. (2019) https://www.rumtoast.com/
 Retrieved on 1/2/2020
The News Lens. (2018) https://www.thenewslens.com/article/91598
 Retrieved on 1/10/2020
Line Inc. (2019) https://linecorp.com/zh-hant
 Retrieved on 1/2/2020
Line Developer. (2019) https://developers.line.biz/zh-hant/services/bot-designer
 Retrieved on 1/2/2020
衛生福利部食品藥物管理署 (2020) https://www.fda.gov.tw/TC/news.aspx?cid=5049&cchk=55abc933-3e57-48db-afff-aa4cc1e4ae0
 Retrieved on 2/4/2020
HanLP (2020) https://github.com/hankcs/HanLP
 Retrieved on 3/26/2020
Aamodt, A., & Plaza, E. J. A. c. (1994). Case-based reasoning: Foundational issues, methodological variations, and system approaches. AI communications, 7(1), 39-59.
Abu-Salih, B., Wongthongtham, P., & Kit, C. Y. (2018). Twitter mining for ontology-based domain discovery incorporating machine learning. Journal of Knowledge Management, 22(5), 949-981.
Aker, A., Sliwa, A., Dalvi, F., Bontcheva, K. J. O. S. N., & Media. (2019). Rumour verification through recurring information and an inner-attention mechanism. Online Social Networks, 13, 100045.
Alkhodair, S. A., Ding, S. H. H., Fung, B. C. M., & Liu, J. Q. (2020). Detecting breaking news rumors of emerging topics in social media. Information Processing & Management, 57(2), 102018.
Allport, G., & Postman, L. (1965). The psychology of rumor. Russel & Russell. In: Inc.
Alzanin, S. M., & Azmi, A. M. (2019). Rumor detection in Arabic tweets using semi-supervised and unsupervised expectation-maximization. Knowledge-Based Systems, 185, 104945.
Amailef, K., & Lu, J. (2013). Ontology-supported case-based reasoning approach for intelligent m-Government emergency response services. Decision Support Systems, 55(1), 79-97.
Asghar, M. Z., Habib, A., Habib, A., Khan, A., Ali, R., & Khattak, A. (2019). Exploring deep neural networks for rumor detection. Journal of Ambient Intelligence and Humanized Computing, 1-19.
Asif, M., Martiniano, H. F., Vicente, A. M., & Couto, F. M. J. P. o. (2018). Identifying disease genes using machine learning and gene functional similarities, assessed through Gene Ontology. PloS one, 13(12), e0208626.
Azad, H. K., & Deepak, A. (2019). Query expansion techniques for information retrieval: A survey. Information Processing & Management, 56(5), 1698-1735.
Banerjee, I., Kurtz, C., Devorah, A. E., Do, B., Rubin, D. L., & Beaulieu, C. F. (2018). Relevance feedback for enhancing content based image retrieval and automatic prediction of semantic image features: Application to bone tumor radiographs. Journal of Biomedical Informatics, 84, 123-135.
Barbosa, E. F., Nakagawa, E. Y., & Maldonado, J. C. (2006). Towards the Establishment of an Ontology of Software Testing. Paper presented at the SEKE.
Begum, S., Ahmed, M. U., Funk, P., Xiong, N., & Folke, M. (2011). Case-Based Reasoning Systems in the Health Sciences: A Survey of Recent Trends and Developments. Ieee Transactions on Systems Man and Cybernetics Part C-Applications and Reviews, 41(4), 421-434.
Boididou, C., Papadopoulos, S., Zampoglou, M., Apostolidis, L., Papadopoulou, O., & Kompatsiaris, Y. J. I. J. o. M. I. R. (2018). Detection and visualization of misleading content on Twitter. International Journal of Multimedia Information Retrieval, 7(1), 71-86.
Bondielli, A., & Marcelloni, F. (2019). A survey on fake news and rumour detection techniques. Information Sciences, 497, 38-55.
Boyd, D. M., & Ellison, N. B. (2007). Social Network Sites: Definition, History, and Scholarship. Journal of Computer-Mediated Communication, 13(1), 210-230.
Chen, L., Song, L. T., Shao, Y., Li, D. W., & Ding, K. Y. (2019). Using natural language processing to extract clinically useful information from Chinese electronic medical records. International Journal of Medical Informatics, 124, 6-12.
Chen, W. L., Zhang, Y., Yeo, C. K., Lau, C. T., & Lee, B. S. (2018). Unsupervised rumor detection based on users′ behaviors using neural networks. Pattern Recognition Letters, 105, 226-233.
Chi, Y. L., & Chen, C. Y. (2009). Project teaming: Knowledge-intensive design for composing team members. Expert Systems with Applications, 36(5), 9479-9487.
Chuang, C. L. (2013). Application of hybrid case-based reasoning for enhanced performance in bankruptcy prediction. Information Sciences, 236, 174-185.
El Midaoui, O., El Ghali, B., El Qadi, A., & Rahmani, M. D. (2018). Geographical query reformulation using a geographical taxonomy and WordNet. Procedia Computer Science, 127, 489-498.
Fard, A. E., Mohammadi, M., Chen, Y., & Van de Walle, B. J. I. T. o. C. S. S. (2019). Computational Rumor Detection Without Non-Rumor: A One-Class Classification Approach. IEEE Transactions on Computational Social Systems, 6(5), 830-846.
Fellbaum, C. J. T. e. o. a. l. (2012). WordNet. The encyclopedia of applied linguistics.
Fernandez-Reyes, F. C., Hermosillo-Valadez, J., & Montes-y-Gomez, M. (2018). A Prospect-Guided global query expansion strategy using word embeddings. Information Processing & Management, 54(1), 1-13.
Galam, S. (2003). Modelling rumors: the no plane Pentagon French hoax case. Physica a-Statistical Mechanics and Its Applications, 320, 571-580.
Gelinas, L., Pierce, R., Winkler, S., Cohen, I. G., Lynch, H. F., & Bierer, B. E. (2017). Using Social Media as a Research Recruitment Tool: Ethical Issues and Recommendations. American Journal of Bioethics, 17(3), 3-14.
Goker, A., & Davies, J. (2009). Information retrieval: Searching in the 21st century: John Wiley & Sons.
Gomez-Vallejo, H. J., Uriel-Latorre, B., Sande-Meijide, M., Villamarin-Bello, B., Pavon, R., Fdez-Riverola, F., & Glez-Pena, D. (2016). A case-based reasoning system for aiding detection and classification of nosocomial infections. Decision Support Systems, 84, 104-116.
Gruber, T. R. J. I. j. o. h.-c. s. (1995). Toward principles for the design of ontologies used for knowledge sharing? International journal of human-computer studies, 43(5-6), 907-928.
Guarino, N. (1998). Formal ontology in information systems: Proceedings of the first international conference (FOIS′98), June 6-8, Trento, Italy (Vol. 46): IOS press.
Guo, J., Fan, Y., Pang, L., Yang, L., Ai, Q., Zamani, H., . . . Management. (2019). A deep look into neural ranking models for information retrieval. Information processing management, 102067.
He, Z. B., Cai, Z. P., Yu, J. G., Wang, X. M., Sun, Y. C., & Li, Y. S. (2017). Cost-Efficient Strategies for Restraining Rumor Spreading in Mobile Social Networks. Ieee Transactions on Vehicular Technology, 66(3), 2789-2800.
Hu, Y. H., Pan, Q. H., Hou, W. B., & He, M. F. (2018). Rumor spreading model with the different attitudes towards rumors. Physica a-Statistical Mechanics and Its Applications, 502, 331-344.
Kaplan, A. M., & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of Social Media. Business Horizons, 53(1), 59-68.
Kawachi, K., Seki, M., Yoshida, H., Otake, Y., Warashina, K., & Ueda, H. (2008). A rumor transmission model with various contact interactions. Journal of Theoretical Biology, 253(1), 55-60.
Kesten, H., & Sidoravicius, V. J. T. a. o. p. (2005). The spread of a rumor or infection in a moving population. The annals of probability, 33(6), 2402-2462.
Kolodner, J. L. J. A. i. r. (1992). An introduction to case-based reasoning. Artificial intelligence review, 6(1), 3-34.
Kumar, C. S. S., & Santhosh, R. (2020). Effective information retrieval and feature minimization technique for semantic web data. Computers & Electrical Engineering, 81, 106518.
Lee, C. H., Wang, Y. H., & Trappey, A. J. C. (2015). Ontology-based reasoning for the intelligent handling of customer complaints. Computers & Industrial Engineering, 84, 144-155.
Li, H., & Sun, J. (2013). Predicting Business Failure Using an RSF-based Case-Based Reasoning Ensemble Forecasting Method. Journal of Forecasting, 32(2), 180-192.
Liang, G., He, W., Xu, C., Chen, L., & Zeng, J. J. I. T. o. C. S. S. (2015). Rumor identification in microblogging systems based on users’ behavior. IEEE Transactions on Computational Social Systems, 2(3), 99-108.
Lin, W. C., Chen, Z. Y., Ke, S. W., Tsai, C. F., & Lin, W. Y. (2015). The effect of low-level image features on pseudo relevance feedback. Neurocomputing, 166, 26-37.
Liu, Y., & Xu, S. J. I. T. o. c. s. s. (2016). Detecting rumors through modeling information propagation networks in a social media environment. IEEE Transactions on Computational Social Systems, 3(2), 46-62.
Liu, Y. H., Jin, X. L., & Shen, H. W. (2019). Towards early identification of online rumors based on long short-term memory networks. Information Processing & Management, 56(4), 1457-1467.
Majumdar, A., & Bose, I. (2018). Detection of financial rumors using big data analytics: the case of the Bombay Stock Exchange. Journal of Organizational Computing and Electronic Commerce, 28(2), 79-97.
Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to information retrieval: Cambridge university press.
McGuinness, D. L., & Van Harmelen, F. J. W. C. r. (2004). OWL web ontology language overview. W3C recommendation, 10(10), 2004.
Mondal, T., Pramanik, P., Bhattacharya, I., Boral, N., & Ghosh, S. (2018). Analysis and Early Detection of Rumors in a Post Disaster Scenario. Information Systems Frontiers, 20(5), 961-979.
Nasir, J. A., Varlamis, I., & Ishfaq, S. (2019). A knowledge-based semantic framework for query expansion. Information Processing & Management, 56(5), 1605-1617.
Navarro, L. C., Navarro, A. K. W., Gregio, A., Rocha, A., & Dahab, R. (2018). Leveraging ontologies and machine-learning techniques for malware analysis into Android permissions ecosystems. Computers & Security, 78, 429-453.
Nekovee, M., Moreno, Y., Bianconi, G., Marsili, M. J. P. A. S. M., & Applications, i. (2007). Theory of rumour spreading in complex social networks. Physica A: Statistical Mechanics its Applications, 374(1), 457-470.
Noy, N. F., & McGuinness, D. L. (2001). Ontology development 101: A guide to creating your first ontology. In.
Oh, O., Agrawal, M., & Rao, H. R. (2013). Community intelligence and social media services: A rumor theoretic analysis of tweets during social crises. Mis Quarterly, 37(2), 407-U120.
Salton, G., Buckley, C. J. I. p., & management. (1988). Term-weighting approaches in automatic text retrieval. Information processing management, 24(5), 513-523.
Sato, K., Wang, J. B., & Cheng, Z. X. (2019). Credibility Evaluation of Twitter-Based Event Detection by a Mixing Analysis of Heterogeneous Data. Ieee Access, 7, 1095-1106.
Song, C., Yang, C., Chen, H., Tu, C., Liu, Z., Sun, M. J. I. T. o. K., & Engineering, D. (2019). CED: Credible early detection of social media rumors. IEEE Transactions on Knowledge Data Engineering, 14, 1-12.
Song, M., Song, I. Y., Hu, X. H., & Allen, R. B. (2007). Integration of association rules and ontologies for semantic query expansion. Data & Knowledge Engineering, 63(1), 63-75.
Studer, R., Benjamins, V. R., Fensel, D. J. D., & engineering, k. (1998). Knowledge engineering: principles and methods. Data knowledge engineering, 25(1-2), 161-197.
Voulodimos, A., Doulamis, N., Doulamis, A., Protopapadakis, E. J. C. i., & neuroscience. (2018). Deep learning for computer vision: A brief review. Computational intelligence neuroscience, 2018, 1-13.
Wang, J. J., Zhao, L. J., & Huang, R. B. (2014). SIRaRu rumor spreading model in complex networks. Physica a-Statistical Mechanics and Its Applications, 398, 43-55.
Watson, I., & Marir, F. J. T. k. e. r. (1994). Case-based reasoning: A review. The knowledge engineering review, 9(4), 327-354.
Yang, Y., Zhang, Y. C., Liu, J., Liu, X. M., Yuan, F., & Zhong, S. P. (2019). Chinese Multi-Keyword Fuzzy Rank Search over Encrypted Cloud Data Based on Locality-Sensitive Hashing. Journal of Information Science and Engineering, 35(1), 137-158.
Zhang, X. C., & Ghorbani, A. A. (2020). An overview of online fake news: Characterization, detection, and discussion. Information Processing & Management, 57(2), 102025.
Zubiaga, A., Kochkina, E., Liakata, M., Procter, R., Lukasik, M., Bontcheva, K., . . . Augenstein, I. (2018). Discourse-aware rumour stance classification in social media using sequential classifiers. Information Processing & Management, 54(2), 273-290.
指導教授 陳仲儼(Chung-Yang Chen) 審核日期 2020-6-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明