參考文獻 |
中文文獻
[1] 中華民國交通部(2019)。運輸部門溫室氣體排放管制行動方案成果報告。網站:https://is.gd/qQ20PN (上網日期:2020年3月15日)。
[2] 中華民國交通部(2020)。環境永續指標-公共運輸乘客人數。網站:https://is.gd/SCEtaU (上網日期:2020年1月5日)。
[3] 中華民國交通部(2020)。機動車輛登記數。網站:https://is.gd/SSXdrx (上網日期:2020年3月15日)。
[4] 台灣環境資訊中心(2019)。去年逾6000萬人受極端氣候影響 聯合國:造成上萬人死亡。網站:https://e-info.org.tw/node/216277 (上網日期:2019年12月7日)。
[5] 台灣環境資訊中心(2019)。《再生能源發展條例》十年大翻修六大修法重點解析。網站:https://e-info.org.tw/node/217428 (上網日期:2019年12月19日)。
[6] 台灣環境資訊中心(2018)。直擊IEA能效營:衝綠色運輸 從健全「基礎設施」起跑。網站:https://e-info.org.tw/node/213372 (上網日期:2019年12月19日)。
[7] 台灣電力公司(2020)。各縣市太陽光電容量因數。網站:https://is.gd/djUlYj (上網日期:2020年6月23日)。
[8] 台灣電力公司(2020)。各種發電方式之發電成本。網站:https://is.gd/spdD9a (上網日期:2020年6月23日)。
[9] 台灣電力公司(2020)。台灣電力公司電價表。網站:https://is.gd/gqxlKK (上網日期:2020年6月23日)。
[10] 台灣經貿網(2019)。電池成本是電動汽車發展一大關鍵。網站:https://is.gd/xcZyqb (上網日期:2020年1月4日)。
[11] 再生能源資訊網(2017)。水力能與海洋能知識館。網站:https://is.gd/AwOPxv (上網日期:2020年3月15日)。
[12] 行政院環保署(2019)。節能減碳政策。網站:https://is.gd/oIVN94(上網日期:2019年12月19日)。
[13] 交通部公路總局(2020)。新車領牌數-按使用燃料別分。網站:https://is.gd/q7uen4 (上網日期:2020年6月23日)。
[14] 特斯拉官方網站(2020)。Tesla Model S。網站:https://is.gd/pNVdme (上網日期:2020年6月23日)。
[15] 經濟部能源局(2017)。風力發電4年推動計畫。網站:https://is.gd/YfKHjl(上網日期:2020年3月15日)。
[16] 綠學院(2019)。全世界最大的儲能系統不是Tesla的鋰電池儲能廠,竟然是…。網站:https://is.gd/7g5u5y(上網日期:2020年1月5日)。
英文文獻
[17] Alirezaei, M., Noori, M., & Tatari, O. (2016). Getting to net zero energy building: Investigating the role of vehicle to home technology. Energy and Buildings, 130, 465–476.
[18] Arushanyan, Y., Ekener, E., & Moberg, Å. (2017). Sustainability assessment framework for scenarios – SAFS. Environmental Impact Assessment Review, 63, 23–34.
[19] Awerbuch, S., Stirling, A., Jansen, J. C., & Beurskens, L. W. M. (2006). Full-Spectrum Portfolio and Diversity Analysis of Energy Technologies. Managing Enterprise Risk, 202–222.
[20] Chen, Z., & Blaabjerg, F. (2009). Wind farm—A power source in future power systems. Renewable and Sustainable Energy Reviews, 13(6-7), 1288–1300.
[21] Chen W, Liang J, Yang Z ,Li G, (2019). A Review of Lithium-Ion Battery for Electric Vehicle Applications And Beyond. Energy Procedia, 158, 4363-4368.
[22] Carbon Trust (2012). Making sense of renewable energy technologies. (https://is.gd/VUCauF, accessed Jan. 31, 2020).
[23] Djukic, A., & Vukmirović, M. (2011). Walking as a Climate Friendly Transportation Mode in Urban Environment - Case Study: Belgrade. Traffic and Transport Engineering, 2011, 1(4), 214-230.
[24] European Environment Agency. (2016). Electric vehicles in Europe. (https://is.gd/d0tJfU, accessed Jan. 2, 2020).
[25] ENSTO (2016).V2G and V2H The smart future of vehicle-to grid and vehicle-to-home. (https://is.gd/ZLdmCO, accessed Jan. 31, 2020).
[26] Global Wind Energy Council (2019). WINDSIGHTS Global Wind Market in 2019.
(https://gwec.net/windsights/, accessed Mar. 15, 2020).
[27] Ghezloun A, Saidane A , Merabet H, (2017) . New commitments in support of the Paris Agreement. Energy Procrdia, 119, 10-16.
[28] Gao Y, Gao X, Zhang X, (2017). The 2 °C Global Temperature Target and the Evolution of the Long-Term Goal of Addressing Climate Change—From the United Nations Framework Convention on Climate Change to the Paris Agreement. Engineering, 3, 272-278.
[29] Gupta, J., Vegelin, C. (2016). Sustainable development goals and inclusive development. Int Environ Agreements 16, 433–448.
[30] Hoppe, T., Coenen, F., & van den Berg, M. (2016). Illustrating the use of concepts from the discipline of policy studies in energy research: An explorative literature review. Energy Research & Social Science, 21, 12–32.
[31] Hak, T., Janoušková, S., & Moldan, B. (2016). Sustainable Development Goals: A need for relevant indicators. Ecological Indicators, 60, 565–573.
[32] Holden, E., Linnerud, K., & Banister, D. (2014). Sustainable development: Our Common Future revisited. Global Environmental Change, 26, 130–139.
[33] International Energy Agency (2019). Global EV Outlook 2019. (https://is.gd/GXnRBw, accessed Jan. 2, 2020).
[34] Intergovernmental Panel on Climate Change. (2019). Special Report on the Ocean and Cryosphere in a Changing Climate. (https://www.ipcc.ch/srocc/, accessed Dec. 18, 2019).
[35] Kumar, A., Sah, B., Singh, A. R., Deng, Y., He, X., Kumar, P., & Bansal, R. C. (2017). A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renewable and Sustainable Energy Reviews, 69, 596–609.
[36] Li Z, Amir Khajepour A, Song J, (2019). A comprehensive review of the key technologies for pure electric vehicles.Energy, 182, 824-839.
[37] Lu, H., Lin, B., Campbell, D. E., Sagisaka, M., & Ren, H. (2016). Interactions among energy consumption, economic development and greenhouse gas emissions in Japan after World War II. Renewable and Sustainable Energy Reviews, 54, 1060–1072.
[38] Li, H. (2016). Study on Green Transportation System of International Metropolises. Procedia Engineering, 137, 762–771.
[39] Lazzeroni, P., Olivero, S., Repetto, M., Stirano, F., & Vallet M. (2019).Optimal battery management for vehicle-to-home and vehicle-to-grid operations in a residential case study. Energy, 175(15), 704-721.
[40] Liu, L., Kong, F., Liu, X., Peng, Y., & Wang, Q. (2015). A review on electric vehicles interacting with renewable energy in smart grid. Renewable and Sustainable Energy Reviews, 51, 648–661.
[41] Mebratu, D. (1998). Sustainability and sustainable development. Environmental Impact Assessment Review, 18(6), 493–520.
[42] Meadowcroft, J. (2007). Who is in Charge here.Governance for Sustainable Development in a Complex World. Journal of Environmental Policy & Planning, 9(3-4), 299-314.
[43] Norgaard, R. B. (1988). Sustainable development A co-evolutionary view. Futures, 20(6), 606-620.
[44] Purvis, B., Mao, Y., & Robinson, D. (2018). Three pillars of sustainability in search of conceptual origins. Sustainability science, 14(3), 681-695.
[45] Rogelj J., Knutti, R. (2016) .Geosciences after Paris. Nature Geoscience, 9, 187–189.
[46] REN21. (2019). Perspectives on the global renewable energy transition. (https://is.gd/PWwp2V, accessd Mar. 15, 2020).
[47] Ray, A., & De, S. (2019). Renewable Electricity Generation – Effect on GHG Emission. Reference Module in Materials Science and Materials Engineering.
[48] Sabine, C. L., & Feely, R. A. (2015). CLIMATE AND CLIMATE CHANGE Carbon Dioxide. Encyclopedia of Atmospheric Sciences, 10–17.
[49] Stern N, Jacobs M,(2006). The Economics of Climate Change: The Stern Review.
tual Suciu, M.-C., & Năsulea, D.-F. (2018). Intellectual Capital and Creative Economy as Key Drivers for Competitiveness Towards a Smart and Sustainable Development: Challenges and Opportunities for Cultural and Creative Communities. Intellectual Capital Management as a Driver of Sustainability, 67–97.
[51] Silvestre, B. S., & Ţîrcă, D. M. (2019). Innovations for sustainable development: Moving toward a sustainable future. Journal of Cleaner Production, 208, 325–332.
[52] Thompson A.W, (2018) Economic implications of lithium ion battery degradation for Vehicle-to Grid (V2X) services. Journal of Power Sources, 396, 691-709.
[53] Todorovic, M., & Simic, M. (2019). Feasibility study on green transportation. Energy Procedia, 160, 534–541.
[54] UN Sustainable Development Goals. (2019).Transforming our world: the 2030 Agenda for Sustainable Development. (https://is.gd/aE8s1n, accessed Mar. 15, 2020).
[55] United Nations Environment Programme. (2018). Emissions Gap Report 2018. (https://is.gd/zb5Xkb, accessed Dec. 19, 2019).
[56] Victor, P. A. (1991). Indicators of sustainable development some lessons from capital theory. Ecological Economics, 4(3), 191–213.
[57] Verbruggen, A. (2008). Renewable and nuclear power: A common future? Energy Policy, 36(11), 4036–4047.
[58] WCED. (1987). World commission on environment and development. Our common future, 17, 1-91.
[59] Wi, Y.-M., Lee, J.-U., & Joo, S.-K. (2013). Electric vehicle charging method for smart homes/buildings with a photovoltaic system. IEEE Transactions on Consumer Electronics, 59(2), 323–328.
[60] Wu, X., Hu, X., Teng, Y., Qian, S., & Cheng, R. (2017). Optimal integration of a hybrid solar-battery power source into smart home nanogrid with plug-in electric vehicle. Journal of Power Sources, 363, 277–283. |