博碩士論文 107426024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:18.188.202.89
姓名 洪堃靖(Hong-Kung Jing)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 獨立型V2H系統結合太陽能發電之效益
(Benefit Analysis of Stand-Alone V2H Systems Integrated with Solar PV)
相關論文
★ 半導體化學材料銷售策略分析-以跨國B化工公司為例★ TFT-LCD CELL製程P檢點燈不良解析流程改善之關聯法則應用
★ 金融風暴時期因應長鞭效應的策略 –以X公司為例★ 勞動生產力目標訂定之研究-DEA 資料包絡法應用
★ 應用田口方法導入低溫超薄ITO透明導電膜於電容式觸控面板之研究★ 多階不等效平行機台排程與訂單決策
★ 多準則決策之應用-以雷射半導體產業為例★ 專案管理模式進行品管圈活動-以半導體機台保養測機流程改善為例
★ 應用e8D降低不合格品之效益分析-以快速消費品製造為例★ 供應商評選模式之建構-以塑膠射出成型機製造為例
★ 應用協同規劃預測補貨於伺服器備品存貨改善之研究-以Q代工公司為例★ 船用五金拋光作業之生產規劃
★ 以SCOR模型探討汽車安全輔助系統供應鏈-以A公司採購作業改善為例★ 研發補助計畫執行成效評估之研究以「工業基礎技術專案計畫」為例
★ 運用生態效益發展永續之耳機產業★ 失效模式設計審查(DRBFM)之應用-以筆記型電腦為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 從工業化時代到現在,溫室氣體排放驟增,造成嚴重空氣污染以及氣候變遷,溫室氣體排的來源當中,主要為工業和運輸業,因此再生能源和綠色運輸越來越受到國際重視,各國紛紛將能源政策轉向為投資再生能源發展,且各大車廠皆積極研發電動汽車,希望利用再生能源和綠色運輸工具來降低溫室氣體排放。台灣資源高度依賴進口,且隨著人口上升和經濟增長,汽車使用量逐年向上攀升,政府如何推廣再生能源以及綠色運輸變成重點議題,因此本研究將從電動汽車為重點下手,以台灣城市為研究地區,使用數學模型著手進行研究。
電能難以大量儲存,因此在電力來源不穩定或停電時,緊急電力供應就顯得非常重要。傳統「Vehicle to Home」(V2H)系統是家庭將電動汽車電池當作備載,在電力離峰時使用較便宜電價將電動汽車充電,並在隔天電力高峰時放電,達到降低充電成本的目的。本研究使用將電動汽車電池當作備載的概念,建造一個不連接電網的獨立型V2H系統並延伸結合再生能源發電,全部用電來源皆使用再生能源。接著蒐集家庭用電資料,在已知家庭使用電動汽車的排程時間下,在電動汽車無人使用停放在家裡時,可利用電動汽車電池當作緊急電力來源,並依照該地區日照量,計算出需要安裝多少太陽能板才能滿足整體的電力需求,因此日照量為日後決策者的一項重要參考依據。研究結果表明,使用獨立型V2H系統能使家庭實現靈活的能源管理且一年能降低約3頓的碳排放量。未來若大量家庭使用V2H並結合再生能源,不僅能夠提高能源自主性,且能降低台灣環境污染。但在台灣再生能源發電與其他傳統發電相比較,其能量密度較低,所以會有較高的發電成本,因此發電成本和環境保護如何取得平衡將是未來研究的一大課題
關鍵字:永續發展、再生能源、電動汽車、V2H系統
摘要(英) From industrial age to now, greenhouse gas emissions have increased sharply, causing severe air pollution and climate change. Industry and transportation are the main sources of greenhouse gas emissions, therefore, renewable energy and green transportation are receiving more and more international attention. Most countries have turned their energy policies to invest in the development of renewable energy, and major car manufacturers are actively developing electric vehicles, hoping to use renewable energy and green transportation to reduce greenhouse gas emissions. Taiwan is highly dependent on imports of resources, and with the increase of population and economic growth, the use of automobiles is increasing year by year. How the government promotes renewable energy and green transportation has become a key issue. Therefore, this study will focus on electric vehicles, take Taiwan city as the research area, and use mathematical models to carry out the study.
It is difficult to store large amounts of electrical energy, so emergency power supplies are important when power sources are unstable or power is out. The traditional "Vehicle to Home" (V2H) system is designed to reduce the charging cost by using the electric vehicle battery as a backup load, charging the electric vehicle at cheaper off-peak electricity prices, and discharging it at the peak of the next day. This study uses the concept of using electric vehicle batteries as a backup, build a Stand-Alone V2H system that is not connected to the power grid and combined with renewable energy to generate electricity, all sources of electricity are using renewable. Then collect data on household electricity consumption. Under the scheduled time of households using electric vehicles, when the electric vehicle is not used and parked at home, the electric vehicle battery can be used as an emergency power, and calculated how many solar panels need to be installed to meet the overall electricity demand based on the amount of sunlight in the area, so the amount of sunlight is an important reference for decision makers. The results show that households using Stand-Alone V2H systems can achieve flexible energy management and reduce carbon emissions by about three tons a year. In the future, if large number of households use V2H system combined with renewable energy, it can not only improve energy independence, but also reduce environmental pollution in Taiwan. However, compared with other traditional power generation, renewable energy generation in Taiwan has lower energy density, so it will have higher power generation cost. Therefore, how to balance power generation cost and environmental protection will be a major research topic in the future.
Key words: sustainable development, renewable energy, electric vehicle, V2H system
關鍵字(中) ★ 永續發展
★ 再生能源
★ 電動汽車
★ V2H系統
關鍵字(英)
論文目次 中文摘要 i
Abstract ii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 3
1.3 論文架構 4
第二章 研究問題 5
2.1 氣候變遷(Climate change) 5
2.2 電動汽車(Electric vehicle) 8
2.3 研究問題 11
第三章 文獻探討 13
3.1 永續發展 13
3.2 再生能源 16
3.3 綠色運輸 20
3.4 Vehicle to Home 24
第四章 研究方法 27
第五章 電腦實驗 33
5.1 資料蒐集 33
5.2 情境結果分析 36
5.2.1 情境一 家庭電池初始值為50度 36
5.2.2 情境二 家庭電池初始值為30度 40
5.2.3 情境三 家庭電量初始值為10度 42
第六章 結論與建議 45
6.1 研究總結 45
6.2 後續工作 46
參考文獻 47

參考文獻 中文文獻
[1] 中華民國交通部(2019)。運輸部門溫室氣體排放管制行動方案成果報告。網站:https://is.gd/qQ20PN (上網日期:2020年3月15日)。
[2] 中華民國交通部(2020)。環境永續指標-公共運輸乘客人數。網站:https://is.gd/SCEtaU (上網日期:2020年1月5日)。
[3] 中華民國交通部(2020)。機動車輛登記數。網站:https://is.gd/SSXdrx (上網日期:2020年3月15日)。
[4] 台灣環境資訊中心(2019)。去年逾6000萬人受極端氣候影響 聯合國:造成上萬人死亡。網站:https://e-info.org.tw/node/216277 (上網日期:2019年12月7日)。
[5] 台灣環境資訊中心(2019)。《再生能源發展條例》十年大翻修六大修法重點解析。網站:https://e-info.org.tw/node/217428 (上網日期:2019年12月19日)。
[6] 台灣環境資訊中心(2018)。直擊IEA能效營:衝綠色運輸 從健全「基礎設施」起跑。網站:https://e-info.org.tw/node/213372 (上網日期:2019年12月19日)。
[7] 台灣電力公司(2020)。各縣市太陽光電容量因數。網站:https://is.gd/djUlYj (上網日期:2020年6月23日)。
[8] 台灣電力公司(2020)。各種發電方式之發電成本。網站:https://is.gd/spdD9a (上網日期:2020年6月23日)。
[9] 台灣電力公司(2020)。台灣電力公司電價表。網站:https://is.gd/gqxlKK (上網日期:2020年6月23日)。
[10] 台灣經貿網(2019)。電池成本是電動汽車發展一大關鍵。網站:https://is.gd/xcZyqb (上網日期:2020年1月4日)。
[11] 再生能源資訊網(2017)。水力能與海洋能知識館。網站:https://is.gd/AwOPxv (上網日期:2020年3月15日)。
[12] 行政院環保署(2019)。節能減碳政策。網站:https://is.gd/oIVN94(上網日期:2019年12月19日)。
[13] 交通部公路總局(2020)。新車領牌數-按使用燃料別分。網站:https://is.gd/q7uen4 (上網日期:2020年6月23日)。
[14] 特斯拉官方網站(2020)。Tesla Model S。網站:https://is.gd/pNVdme (上網日期:2020年6月23日)。
[15] 經濟部能源局(2017)。風力發電4年推動計畫。網站:https://is.gd/YfKHjl(上網日期:2020年3月15日)。
[16] 綠學院(2019)。全世界最大的儲能系統不是Tesla的鋰電池儲能廠,竟然是…。網站:https://is.gd/7g5u5y(上網日期:2020年1月5日)。
英文文獻
[17] Alirezaei, M., Noori, M., & Tatari, O. (2016). Getting to net zero energy building: Investigating the role of vehicle to home technology. Energy and Buildings, 130, 465–476.
[18] Arushanyan, Y., Ekener, E., & Moberg, Å. (2017). Sustainability assessment framework for scenarios – SAFS. Environmental Impact Assessment Review, 63, 23–34.
[19] Awerbuch, S., Stirling, A., Jansen, J. C., & Beurskens, L. W. M. (2006). Full-Spectrum Portfolio and Diversity Analysis of Energy Technologies. Managing Enterprise Risk, 202–222.
[20] Chen, Z., & Blaabjerg, F. (2009). Wind farm—A power source in future power systems. Renewable and Sustainable Energy Reviews, 13(6-7), 1288–1300.
[21] Chen W, Liang J, Yang Z ,Li G, (2019). A Review of Lithium-Ion Battery for Electric Vehicle Applications And Beyond. Energy Procedia, 158, 4363-4368.
[22] Carbon Trust (2012). Making sense of renewable energy technologies. (https://is.gd/VUCauF, accessed Jan. 31, 2020).
[23] Djukic, A., & Vukmirović, M. (2011). Walking as a Climate Friendly Transportation Mode in Urban Environment - Case Study: Belgrade. Traffic and Transport Engineering, 2011, 1(4), 214-230.
[24] European Environment Agency. (2016). Electric vehicles in Europe. (https://is.gd/d0tJfU, accessed Jan. 2, 2020).
[25] ENSTO (2016).V2G and V2H The smart future of vehicle-to grid and vehicle-to-home. (https://is.gd/ZLdmCO, accessed Jan. 31, 2020).
[26] Global Wind Energy Council (2019). WINDSIGHTS Global Wind Market in 2019.
(https://gwec.net/windsights/, accessed Mar. 15, 2020).
[27] Ghezloun A, Saidane A , Merabet H, (2017) . New commitments in support of the Paris Agreement. Energy Procrdia, 119, 10-16.
[28] Gao Y, Gao X, Zhang X, (2017). The 2 °C Global Temperature Target and the Evolution of the Long-Term Goal of Addressing Climate Change—From the United Nations Framework Convention on Climate Change to the Paris Agreement. Engineering, 3, 272-278.
[29] Gupta, J., Vegelin, C. (2016). Sustainable development goals and inclusive development. Int Environ Agreements 16, 433–448.
[30] Hoppe, T., Coenen, F., & van den Berg, M. (2016). Illustrating the use of concepts from the discipline of policy studies in energy research: An explorative literature review. Energy Research & Social Science, 21, 12–32.
[31] Hak, T., Janoušková, S., & Moldan, B. (2016). Sustainable Development Goals: A need for relevant indicators. Ecological Indicators, 60, 565–573.
[32] Holden, E., Linnerud, K., & Banister, D. (2014). Sustainable development: Our Common Future revisited. Global Environmental Change, 26, 130–139.
[33] International Energy Agency (2019). Global EV Outlook 2019. (https://is.gd/GXnRBw, accessed Jan. 2, 2020).
[34] Intergovernmental Panel on Climate Change. (2019). Special Report on the Ocean and Cryosphere in a Changing Climate. (https://www.ipcc.ch/srocc/, accessed Dec. 18, 2019).
[35] Kumar, A., Sah, B., Singh, A. R., Deng, Y., He, X., Kumar, P., & Bansal, R. C. (2017). A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renewable and Sustainable Energy Reviews, 69, 596–609.
[36] Li Z, Amir Khajepour A, Song J, (2019). A comprehensive review of the key technologies for pure electric vehicles.Energy, 182, 824-839.
[37] Lu, H., Lin, B., Campbell, D. E., Sagisaka, M., & Ren, H. (2016). Interactions among energy consumption, economic development and greenhouse gas emissions in Japan after World War II. Renewable and Sustainable Energy Reviews, 54, 1060–1072.
[38] Li, H. (2016). Study on Green Transportation System of International Metropolises. Procedia Engineering, 137, 762–771.
[39] Lazzeroni, P., Olivero, S., Repetto, M., Stirano, F., & Vallet M. (2019).Optimal battery management for vehicle-to-home and vehicle-to-grid operations in a residential case study. Energy, 175(15), 704-721.
[40] Liu, L., Kong, F., Liu, X., Peng, Y., & Wang, Q. (2015). A review on electric vehicles interacting with renewable energy in smart grid. Renewable and Sustainable Energy Reviews, 51, 648–661.
[41] Mebratu, D. (1998). Sustainability and sustainable development. Environmental Impact Assessment Review, 18(6), 493–520.
[42] Meadowcroft, J. (2007). Who is in Charge here.Governance for Sustainable Development in a Complex World. Journal of Environmental Policy & Planning, 9(3-4), 299-314.
[43] Norgaard, R. B. (1988). Sustainable development A co-evolutionary view. Futures, 20(6), 606-620.
[44] Purvis, B., Mao, Y., & Robinson, D. (2018). Three pillars of sustainability in search of conceptual origins. Sustainability science, 14(3), 681-695.
[45] Rogelj J., Knutti, R. (2016) .Geosciences after Paris. Nature Geoscience, 9, 187–189.
[46] REN21. (2019). Perspectives on the global renewable energy transition. (https://is.gd/PWwp2V, accessd Mar. 15, 2020).
[47] Ray, A., & De, S. (2019). Renewable Electricity Generation – Effect on GHG Emission. Reference Module in Materials Science and Materials Engineering.
[48] Sabine, C. L., & Feely, R. A. (2015). CLIMATE AND CLIMATE CHANGE Carbon Dioxide. Encyclopedia of Atmospheric Sciences, 10–17.
[49] Stern N, Jacobs M,(2006). The Economics of Climate Change: The Stern Review.
tual Suciu, M.-C., & Năsulea, D.-F. (2018). Intellectual Capital and Creative Economy as Key Drivers for Competitiveness Towards a Smart and Sustainable Development: Challenges and Opportunities for Cultural and Creative Communities. Intellectual Capital Management as a Driver of Sustainability, 67–97.
[51] Silvestre, B. S., & Ţîrcă, D. M. (2019). Innovations for sustainable development: Moving toward a sustainable future. Journal of Cleaner Production, 208, 325–332.
[52] Thompson A.W, (2018) Economic implications of lithium ion battery degradation for Vehicle-to Grid (V2X) services. Journal of Power Sources, 396, 691-709.
[53] Todorovic, M., & Simic, M. (2019). Feasibility study on green transportation. Energy Procedia, 160, 534–541.
[54] UN Sustainable Development Goals. (2019).Transforming our world: the 2030 Agenda for Sustainable Development. (https://is.gd/aE8s1n, accessed Mar. 15, 2020).
[55] United Nations Environment Programme. (2018). Emissions Gap Report 2018. (https://is.gd/zb5Xkb, accessed Dec. 19, 2019).
[56] Victor, P. A. (1991). Indicators of sustainable development some lessons from capital theory. Ecological Economics, 4(3), 191–213.
[57] Verbruggen, A. (2008). Renewable and nuclear power: A common future? Energy Policy, 36(11), 4036–4047.
[58] WCED. (1987). World commission on environment and development. Our common future, 17, 1-91.
[59] Wi, Y.-M., Lee, J.-U., & Joo, S.-K. (2013). Electric vehicle charging method for smart homes/buildings with a photovoltaic system. IEEE Transactions on Consumer Electronics, 59(2), 323–328.
[60] Wu, X., Hu, X., Teng, Y., Qian, S., & Cheng, R. (2017). Optimal integration of a hybrid solar-battery power source into smart home nanogrid with plug-in electric vehicle. Journal of Power Sources, 363, 277–283.
指導教授 王啟泰 審核日期 2020-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明