參考文獻 |
英文文獻
[1] Aalipour, G., Kumar, P., Aditham, S., Nguyen, T., & Sood, A. (2018). Applications of Sequence to Sequence Models for Technical Support Automation. In 2018 IEEE International Conference on Big Data (Big Data), 4861-4869.
[2] Adiwardana, D., Luong, M. T., So, D. R., Hall, J., Fiedel, N., Thoppilan, R., ... & Le, Q. V. (2020). Towards a human-like open-domain chatbot. arXiv preprint arXiv:2001.09977.
[3] Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473
[4] Belinkov, Y., Màrquez, L., Sajjad, H., Durrani, N., Dalvi, F., & Glass, J. (2018). Evaluating layers of representation in neural machine translation on part-of-speech and semantic tagging tasks. arXiv preprint arXiv:1801.07772.
[5] Cahn, J. (2017). CHATBOT: Architecture, design, & development. University of Pennsylvania School of Engineering and Applied Science Department of Computer and Information Science.
[6] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.
[7] Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.
[8] Csaky, R. (2019). Deep learning based chatbot models. arXiv preprint arXiv:1908.08835.
[9] Ghazvininejad, M., Brockett, C., Chang, M. W., Dolan, B., Gao, J., Yih, W. T., & Galley, M. (2018). A knowledge-grounded neural conversation model. In Thirty-Second AAAI Conference on Artificial Intelligence.
[10] Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (2016). LSTM: A search space odyssey. IEEE transactions on neural networks and learning systems, 28(10), 2222-2232.
[11] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
[12] Honghao, W. E. I., Zhao, Y., & Ke, J. (2017). Building Chatbot with Emotions. Retrieved April, 12, 2018.
[13] Ji, Z., Lu, Z., & Li, H. (2014). An information retrieval approach to short text conversation. arXiv preprint arXiv:1408.6988.
[14] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
[15] Lőrincz, B., Nuţu, M., & Stan, A. (2019). Romanian Part of Speech Tagging using LSTM Networks. In 2019 IEEE 15th International Conference on Intelligent Computer Communication and Processing (ICCP) ,223-228.
[16] Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
[17] Palasundram, K., Sharef, N. M., Nasharuddin, N., Kasmiran, K., & Azman, A. (2019). Sequence to sequence model performance for education chatbot. International Journal of Emerging Technologies in Learning (iJET), 14(24), 56-68.
[18] Papineni, K., Roukos, S., Ward, T., & Zhu, W. J. (2002). BLEU: a method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association for Computational Linguistics, 311-318.
[19] Raffel, C., & Ellis, D. P. (2015). Feed-forward networks with attention can solve some long-term memory problems. arXiv preprint arXiv:1512.08756.
[20] Rezaeinia, S. M., Ghodsi, A., & Rahmani, R. (2017). Improving the accuracy of pre-trained word embeddings for sentiment analysis. arXiv preprint arXiv:1711.08609.
[21] Ritter, A., Cherry, C., & Dolan, W. B. (2011). Data-driven response generation in social media. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, 583-593.
[22] Serban, I. V., Sordoni, A., Bengio, Y., Courville, A., & Pineau, J. (2016). Building end-to-end dialogue systems using generative hierarchical neural network models. In Thirtieth AAAI Conference on Artificial Intelligence.
[23] Shawar, B. A., & Atwell, E. (2003). Using dialogue corpora to train a chatbot. In Proceedings of the Corpus Linguistics 2003 conference, 681-690.
[24] Singh, S. P., Kearns, M. J., Litman, D. J., & Walker, M. A. (2000). Reinforcement learning for spoken dialogue systems. In Advances in Neural Information Processing Systems, 956-962.
[25] Sriram, A., Jun, H., Satheesh, S., & Coates, A. (2017). Cold fusion: Training seq2seq models together with language models. arXiv preprint arXiv:1708.06426.
[26] Su, S. Y., Lo, K. L., Yeh, Y. T., & Chen, Y. N. (2018). Natural language generation by hierarchical decoding with linguistic patterns. arXiv preprint arXiv:1808.02747.
[27] Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. In Advances in neural information processing systems, 3104-3112
[28] Velay, M., & Daniel, F. (2018). Seq2Seq and Multi-Task Learning for joint intent and content extraction for domain specific interpreters. arXiv preprint arXiv:1808.00423.
[29] Vu, V. H., Nguyen, Q. P., Nguyen, K. H., Shin, J. C., & Ock, C. Y. (2020). Korean-Vietnamese Neural Machine Translation with Named Entity Recognition and Part-of-Speech Tags. IEICE Transactions on Information and Systems, 103(4), 866-873.
[30] Williams, J. D., & Young, S. (2007). Partially observable Markov decision processes for spoken dialog systems. Computer Speech & Language, 21(2), 393-422.
[31] Xu, A., Liu, Z., Guo, Y., Sinha, V., & Akkiraju, R. (2017). A new chatbot for customer service on social media. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, 3506-3510.
[32] Yan, Z., Duan, N., Bao, J., Chen, P., Zhou, M., Li, Z., & Zhou, J. (2016). Docchat: An information retrieval approach for chatbot engines using unstructured documents. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 516-525.
[33] Yang, X., Liu, Y., Xie, D., Wang, X., & Balasubramanian, N. (2019). Latent part-of-speech sequences for neural machine translation. arXiv preprint arXiv:1908.11782.
[34] Yin, Z., Chang, K. H., & Zhang, R. (2017). Deepprobe: Information directed sequence understanding and chatbot design via recurrent neural networks. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2131-2139.
[35] Zalake, N., & Naik, G. (2019). Generative Chat Bot Implementation Using Deep Recurrent Neural Networks and Natural Language Understanding. In Proceedings 2019: Conference on Technologies for Future Cities (CTFC).
網站資訊
[36] Chatbots Magazine (2017), Can Chatbots Help Reduce Customer Service Costs by 30%? ,https://chatbotsmagazine.com/how-with-the-help-of-chatbots-customer-service-costs-could-be-reduced-up-to-30-b9266a369945 ,存取時間:2020/3/14.
[37] REVE Chat (2020) ,https://www.revechat.com/blog/chatbots-trends-stats/,存取日期:2020/5/2. |