博碩士論文 107481605 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.137.182.206
姓名 羅智超(Zhi-Chao Luo)  查詢紙本館藏   畢業系所 企業管理學系
論文名稱 基於外部風險事件預測中小企業信用風險之研究
(SMEs Credit Risk Prediction Using External Risk Data)
相關論文
★ 在社群網站上作互動推薦及研究使用者行為對其效果之影響★ 以AHP法探討伺服器品牌大廠的供應商遴選指標的權重決定分析
★ 以AHP法探討智慧型手機產業營運中心區位選擇考量關鍵因素之研究★ 太陽能光電產業經營績效評估-應用資料包絡分析法
★ 建構國家太陽能電池產業競爭力比較模式之研究★ 以序列採礦方法探討景氣指標與進出口值的關聯
★ ERP專案成員組合對績效影響之研究★ 推薦期刊文章至適合學科類別之研究
★ 品牌故事分析與比較-以古早味美食產業為例★ 以方法目的鏈比較Starbucks與Cama吸引消費者購買因素
★ 探討創意店家創業價值之研究- 以赤峰街、民生社區為例★ 以領先指標預測企業長短期借款變化之研究
★ 應用層級分析法遴選電競筆記型電腦鍵盤供應商之關鍵因子探討★ 以互惠及利他行為探討信任關係對知識分享之影響
★ 結合人格特質與海報主色以類神經網路推薦電影之研究★ 資料視覺化圖表與議題之關聯
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 互聯網銀行業務發展迅猛,並且主要利潤來源於中小企業(medium-sized enterprises , SMEs)。然而中小企業違約風險較高,因此需要構建風險識別模型來識別企業信貸違約。該模型應具備:提前預測能力使銀行對不良貸款行為有快速回應能力;使用公開信用數據而不是傳統的財務數據;保證在樣本不平衡率較高水準下仍能保持較高的精確率(Recall)。本研究通過使用公開可獲得的外部風險事件時序數據和橫截面數據構建了一個兩階段模型來預測中小企業的違約風險。第一階段設計了RS-Ripper演算法 ,該演算法改進了Prefix-SPAN演算法提取風險事件的頻繁項,並構建了基於規則的分類器。第二階段通過使用橫截面數據構建LightGBM提升模型精確度(Recall)。該模型在違約預測方面平均提前預測天數達350天,在違約樣本和非違約樣本比例為1:1情況下查全率(Recall),查準率(Precision),準確率 (Accuracy)和 AUC分別為0.92, 0.911, 0.915, 0.956, 在違約樣本和非違約樣本比例為1:16情況下查全率(Recall),查準率(Precision),準確率(Accuracy)和 AUC分別為0.751, 0.618, 0.958, 0.962。
摘要(英) Online banks receive much publicity, and they profit by loaning to small and medium-sized enterprises (SMEs). However, a risk detection model is required to reduce the risk involved in nonperforming loans. This task involves three requirements: predicting the future to enable banks to react to bad loans, considering publicly available credit data instead of financial reports or managers’ personal records, and ensuring that the model has a large area under the receiver operating curve (AUC) and high recall and precision when the data are highly skewed. This study proposes a two-stage model to predict the risk of SME default by using sequences of risk events available on public websites. In the first stage, 1) revised prefix-projected sequential pattern mining and repeated incremental pruning to reduce error are combined and 2) sequences of events are used as input to generate a rule-based classifier with consistent performance as imbalanced increases. The method is combined with LightGBM to increase recall. On average, the proposed method can provide banks with 350 days of early warning. In an ideal scenario, where the number of defects and normal profiles are the same, the recall, precision, accuracy, and AUC of the method can reach 0.92, 0.911, 0.915, 0.956, respectively. In a near-worst-case scenario, with a 1:16 imbalance ratio, the recall, precision, accuracy, and AUC can reach 0.751, 0.618, 0.958, and 0.962, respectively.
關鍵字(中) ★ 中小企業
★ 企業違約
★ 外部風險數據
★ 信用風險
★ 時間序列挖掘
關鍵字(英) ★ SMEs
★ Default Prediction
★ External Risk Data
★ Credit Risk
★ Time Seires Data Mining
論文目次 摘要 I
ABSTRACT II
致謝辭 III
目 錄 IV
圖目錄 VII
表目錄 VIII
一、緒論 1
1-1 研究背景 1
1-2 研究現狀 3
1-2-1 從數據維度看 3
1-2-2 從數據類型看 4
1-2-3 從研究方法論看 4
1-2-4 違約數據樣本不平衡 5
1-2-5 當前研究的空白點 5
1-3 研究目標 6
1-4 研究貢獻 7
1-5 研究思路和方法 7
二、文獻回顧 9
2-1 信用風險方法研究 9
2-1-1 信用風險理論研究 9
2-1-2專家分析法 11
2-1-3 專業機構信用模型 12
2-1-4 信用評分卡 13
2-1-5統計機器學習方法 14
2-2 企業違約過程研究 21
2-3 時間序列模式挖掘研究 22
2-3-1 Apriori 23
2-3-2 GSP 23
2-3-4 SPADE 24
2-3-5 PrefixSpan 24
2-4 違約變數選擇研究 25
2-5 違約樣本不平衡研究 25
2-6 文獻回顧小結 26
三、 研究方法 28
3-1 信用風險定義 28
3-2 中小企業的界定 30
3-3 研究框架 31
3-3-1 第一階段模型構造 33
3-3-2 第二階段模型構造 39
3-4 數據收集 42
四、 數據和變數 44
4-1 樣本資訊 44
4-2時序數據 44
4-3橫截面數據 46
五、 實證結果與分析 48
5-1 超參數設置 48
5-2 基於1:1數據集的分類結果 49
5-2-1 序列和規則結果 49
5-2-2 ARSR規則預測時間提前量 52
5-2-3 橫截面實證結果 53
5-3 基於不同樣本平衡率下的預測結果 58
5-3-1 1:2條件下的混淆矩陣與ROC圖 60
5-3-2 1:4條件下的混淆矩陣與ROC圖 60
5-3-3 1:8條件下的混淆矩陣與ROC圖 61
5-3-4 1:16條件下的混淆矩陣與ROC圖 62
5-4 模型對比實證研究結果 62
5-4-1 模型演算法改進比較結果 62
5-4-2 不同模型比較結果 63
5-4-3 不同行業模型比較結果 64
5-5討論 64
六、結論及未來研究方向 67
6-1 結論 67
6-2 不足及未來研究方向 69
參考文獻 70
附件一:ARSR規則列表 84
參考文獻 [1] MSCI. MSCI. 2021; Available from: https://www.msci.com/.
[2] WorldBank. World Bank Open Data. 2021; Available from: https://data.worldbank.org/.
[3] McKibbin, W. and R. Fernando, The economic impact of COVID-19. Economics in the Time of COVID-19, 2020. 45(10.1162).
[4] Sansa, N.A., The Impact of the COVID-19 on the Financial Markets: Evidence from China and USA. Electronic Research Journal of Social Sciences and Humanities, 2020. 2.
[5] Wang, Q. and M. Su, A preliminary assessment of the impact of COVID-19 on environment–A case study of China. Science of the total environment, 2020. 728: p. 138915.
[6] Wang, J. and M.A. Doan, The Ant empire: Fintech media and corporate convergence within and beyond Alibaba. The political economy of communication, 2019. 6(2).
[7] Allen, L., G. DeLong, and A. Saunders, Issues in the credit risk modeling of retail markets. Journal of Banking & Finance, 2004. 28(4): p. 727-752.
[8] Burgstahler, D.C., L. Hail, and C. Leuz, The importance of reporting incentives: Earnings management in European private and public firms. The accounting review, 2006. 81(5): p. 983-1016.
[9] Abraham, F. and S.L. Schmukler, Addressing the SME finance problem. World Bank Research and Policy Briefs, 2017(120333).
[10] Yoshino, N. and F. Taghizadeh-Hesary, The role of SMEs in Asia and their difficulties in accessing finance. 2018.
[11] Jiang, J., Z. Li, and C. Lin, Financing difficulties of SMEs from its financing sources in China. Journal of Service Science and Management, 2014. 2014.
[12] Altman, E.I., G. Sabato, and N. Wilson, The value of non-financial information in SME risk management. The Journal of Credit Risk, 2010. 6(2): p. 95-127.
[13] Shin, G.H. and J.W. Kolari, Do some lenders have information advantages? Evidence from Japanese credit market data. Journal of Banking & Finance, 2004. 28(10): p. 2331-2351.
[14] Saurina, J. and C. Trucharte, The Impact of Basel II on Lending to Small- and Medium-Sized Firms: A Regulatory Policy Assessment Based on Spanish Credit Register Data. Journal of Financial Services Research, 2004. 26(2): p. 121-144.
[15] Altman, E.I. and G. Sabato, Modelling credit risk for SMEs: Evidence from the US market. Abacus, 2007. 43(3): p. 332-357.
[16] Kou, G., et al., Bankruptcy prediction for SMEs using transactional data and two-stage multiobjective feature selection. Decision Support Systems, 2021. 140: p. 113429.
[17] Giordana, G.A. and I. Schumacher, An empirical study on the impact of Basel III standards on banks’ default risk: The case of Luxembourg. Journal of Risk and Financial Management, 2017. 10(2): p. 8.
[18] Durango‐Gutiérrez, M.P., J. Lara‐Rubio, and A. Navarro‐Galera, Analysis of default risk in microfinance institutions under the Basel III framework. International Journal of Finance & Economics, 2021.
[19] Altman, E., Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy. Journal of Finance, 1968. 23: p. 20.
[20] Edmister, R.O., An empirical test of financial ratio analysis for small business failure prediction. Journal of Financial and Quantitative analysis, 1972. 7(2): p. 1477-1493.
[21] Grunert, J., L. Norden, and M. Weber, The role of non-financial factors in internal credit ratings. Journal of Banking & Finance, 2005. 29(2): p. 509-531.
[22] Khandani, A.E., A.J. Kim, and A.W. Lo, Consumer credit-risk models via machine-learning algorithms. Journal of Banking & Finance, 2010. 34(11): p. 2767-2787.
[23] Patrick, P., A comparison of ratios of successful industrial enterprises with those of failed firms. Certified Public Accountant, 1932. 2: p. 598-605.
[24] Cao, R., J.M. Vilar Fernández, and A. Devia, Modelling consumer credit risk via survival analysis. Sort, 2009. 33(1): p. 3-30.
[25] Glennon, D. and P. Nigro, Measuring the default risk of small business loans: A survival analysis approach. Journal of Money, Credit and Banking, 2005: p. 923-947.
[26] Wilcox, J.W., A simple theory of financial ratios as predictors of failure. Journal of Accounting Research, 1971: p. 389-395.
[27] Barnes, P., The analysis and use of financial ratios. Journal of Business Finance dan Accounting, 1987. 14(4): p. 449.
[28] Zeytinoglu, E. and Y.D. Akarim, Financial failure prediction using financial ratios: An empirical application on Istanbul Stock Exchange. Journal of Applied Finance and Banking, 2013. 3(3): p. 107.
[29] Giordani, P., et al., Taking the twists into account: Predicting firm bankruptcy risk with splines of financial ratios. Journal of Financial and Quantitative Analysis, 2014. 49(4): p. 1071-1099.
[30] Berger, A.N., W.S. Frame, and N.H. Miller, Credit scoring and the availability, price, and risk of small business credit. Journal of money, credit and banking, 2005: p. 191-222.
[31] Ropega, J., The reasons and symptoms of failure in SME. International Advances in Economic Research, 2011. 17(4): p. 476-483.
[32] Zhu, Y., et al., Predicting China’s SME credit risk in supply chain financing by logistic regression, artificial neural network and hybrid models. Sustainability, 2016. 8(5): p. 433.
[33] Tobback, E., et al., Bankruptcy prediction for SMEs using relational data. Decision Support Systems, 2017. 102: p. 69-81.
[34] Altman, E.I., G. Sabato, and N. Wilson, The value of non-financial information in SME risk management. Available at SSRN 1320612, 2008.
[35] Cornée, S., The relevance of soft information for predicting small business credit default: Evidence from a social bank. Journal of Small Business Management, 2019. 57(3): p. 699-719.
[36] Luo, Z., P. Hsu, and N. Xu, SME Default Prediction Framework with the Effective Use of External Public Credit Data. Sustainability, 2020. 12(18): p. 7575.
[37] Beaver, W.H., Financial ratios as predictors of failure. Journal of accounting research, 1966: p. 71-111.
[38] Ohlson, J.A., Financial ratios and the probabilistic prediction of bankruptcy. Journal of accounting research, 1980: p. 109-131.
[39] Peel, M.J. and D.A. Peel, A multilogit approach to predicting corporate failure—Some evidence for the UK corporate sector. Omega, 1988. 16(4): p. 309-318.
[40] Barboza, F., H. Kimura, and E. Altman, Machine learning models and bankruptcy prediction. Expert Systems with Applications, 2017. 83: p. 405-417.
[41] Kim, H., H. Cho, and D. Ryu, Corporate default predictions using machine learning: Literature review. Sustainability, 2020. 12(16): p. 6325.
[42] Ma, X., et al., Study on a prediction of P2P network loan default based on the machine learning LightGBM and XGboost algorithms according to different high dimensional data cleaning. Electronic Commerce Research and Applications, 2018. 31: p. 24-39.
[43] Fuster, A., et al., Predictably unequal? the effects of machine learning on credit markets. The Effects of Machine Learning on Credit Markets (October 1, 2020), 2020.
[44] Leo, M., S. Sharma, and K. Maddulety, Machine learning in banking risk management: A literature review. Risks, 2019. 7(1): p. 29.
[45] Galindo, J. and P. Tamayo, Credit risk assessment using statistical and machine learning: basic methodology and risk modeling applications. Computational Economics, 2000. 15(1): p. 107-143.
[46] Viaene, S., R.A. Derrig, and G. Dedene, A case study of applying boosting Naive Bayes to claim fraud diagnosis. IEEE Transactions on Knowledge and Data Engineering, 2004. 16(5): p. 612-620.
[47] Brezigar-Masten, A. and I. Masten, CART-based selection of bankruptcy predictors for the logit model. Expert systems with applications, 2012. 39(11): p. 10153-10159.
[48] Huang, C.-L., M.-C. Chen, and C.-J. Wang, Credit scoring with a data mining approach based on support vector machines. Expert systems with applications, 2007. 33(4): p. 847-856.
[49] Bellotti, T. and J. Crook, Support vector machines for credit scoring and discovery of significant features. Expert systems with applications, 2009. 36(2): p. 3302-3308.
[50] Altman, E.I., G. Marco, and F. Varetto, Corporate distress diagnosis: Comparisons using linear discriminant analysis and neural networks (the Italian experience). Journal of banking & finance, 1994. 18(3): p. 505-529.
[51] Gregova, E., et al., Predicting Financial Distress of Slovak Enterprises: Comparison of Selected Traditional and Learning Algorithms Methods. Sustainability, 2020. 12(10): p. 3954.
[52] Son, H., et al., Data analytic approach for bankruptcy prediction. Expert Systems with Applications, 2019. 138: p. 112816.
[53] Jian, C., J. Gao, and Y. Ao, A new sampling method for classifying imbalanced data based on support vector machine ensemble. Neurocomputing, 2016. 193: p. 115-122.
[54] Shen, F., et al., A novel ensemble classification model based on neural networks and a classifier optimisation technique for imbalanced credit risk evaluation. Physica A: Statistical Mechanics and its Applications, 2019. 526: p. 121073.
[55] Alam, T.M., et al., An investigation of credit card default prediction in the imbalanced datasets. IEEE Access, 2020. 8: p. 201173-201198.
[56] Leong, C.K., Credit risk scoring with bayesian network models. Computational Economics, 2016. 47(3): p. 423-446.
[57] Chang, Y.-C., K.-H. Chang, and G.-J. Wu, Application of eXtreme gradient boosting trees in the construction of credit risk assessment models for financial institutions. Applied Soft Computing, 2018. 73: p. 914-920.
[58] Marqués, A.I., V. García, and J.S. Sánchez, On the suitability of resampling techniques for the class imbalance problem in credit scoring. Journal of the Operational Research Society, 2013. 64(7): p. 1060-1070.
[59] Brown, I. and C. Mues, An experimental comparison of classification algorithms for imbalanced credit scoring data sets. Expert Systems with Applications, 2012. 39(3): p. 3446-3453.
[60] Baek, J. and S. Cho. Bankruptcy prediction for credit risk using an auto-associative neural network in Korean firms. in 2003 IEEE International Conference on Computational Intelligence for Financial Engineering, 2003. Proceedings. 2003. IEEE.
[61] He, H., W. Zhang, and S. Zhang, A novel ensemble method for credit scoring: Adaption of different imbalance ratios. Expert Systems with Applications, 2018. 98: p. 105-117.
[62] Addo, P.M., D. Guegan, and B. Hassani, Credit risk analysis using machine and deep learning models. Risks, 2018. 6(2): p. 38.
[63] Chawla, N.V., et al., SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 2002. 16: p. 321-357.
[64] Han, H., W.-Y. Wang, and B.-H. Mao. Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. in International conference on intelligent computing. 2005. Springer.
[65] Yu, H., et al., Support vector machine-based optimized decision threshold adjustment strategy for classifying imbalanced data. Knowledge-Based Systems, 2015. 76: p. 67-78.
[66] Stiglitz, J.E., Information and the Change in the Paradigm in Economics. American economic review, 2002. 92(3): p. 460-501.
[67] Stigler, G.J., The economics of information. Journal of political economy, 1961. 69(3): p. 213-225.
[68] Jaffee, D.M. and T. Russell, Imperfect information, uncertainty, and credit rationing. The Quarterly Journal of Economics, 1976. 90(4): p. 651-666.
[69] Stiglitz, J.E. and A. Weiss, Credit rationing in markets with imperfect information. The American economic review, 1981. 71(3): p. 393-410.
[70] Williamson, S.D., Costly monitoring, loan contracts, and equilibrium credit rationing. The Quarterly Journal of Economics, 1987. 102(1): p. 135-145.
[71] Tadelis, S., Game theory: an introduction. 2013: Princeton university press.
[72] Osborne, M.J., An introduction to game theory. Vol. 3. 2004: Oxford university press New York.
[73] Kuhn, H.W., et al., The work of John F. Nash Jr. in game theory: Nobel Seminar, 8 December 1994. Duke Mathematical Journal, 1995. 81(1): p. 1-29.
[74] Haixia, W., Game Theory and Credit Market Efficiency [J]. JOURNAL OF FINANCE, 2000. 10.
[75] Nana, Z., W. Xiujian, and Z. Zhongqiu, Game theory analysis on credit risk assessment in E-commerce. Information Processing & Management, 2022. 59(1): p. 102763.
[76] Markowitz, H., PORTFOLIO SELECTION*. The Journal of Finance, 1952. 7(1): p. 77-91.
[77] Lucas, A., et al., An analytic approach to credit risk of large corporate bond and loan portfolios. Journal of Banking & Finance, 2001. 25(9): p. 1635-1664.
[78] Rosen, D. and D. Saunders, Risk factor contributions in portfolio credit risk models. Journal of Banking & Finance, 2010. 34(2): p. 336-349.
[79] Mišanková, M., K. Kočišová, and P. Adamko. CreditMetrics and its use for the calculation of credit risk. in 2nd International Conference on Economics and Social Science (ICESS 2014), Information Engineering Research Institute, Advances in Education Research. 2014.
[80] Morgan, J., Introduction to creditmetrics. Technical document, 1997.
[81] Giese, G., Enhancing creditrisk+. Risk, 2003. 16(4): p. 73-77.
[82] Gundlach, M. and F. Lehrbass, CreditRisk+ in the banking industry. 2013: Springer Science & Business Media.
[83] Wilde, T., CreditRisk+. Encyclopedia of Quantitative Finance, 2010.
[84] Anderson, R., The credit scoring toolkit: theory and practice for retail credit risk management and decision automation. 2007: Oxford University Press.
[85] Hand, D.J. and W.E. Henley, Statistical classification methods in consumer credit scoring: a review. Journal of the Royal Statistical Society: Series A (Statistics in Society), 1997. 160(3): p. 523-541.
[86] West, D., Neural network credit scoring models. Computers & operations research, 2000. 27(11-12): p. 1131-1152.
[87] Mays, E., Handbook of credit scoring. 2001: Global Professional Publishi.
[88] Capon, N., Credit scoring systems: A critical analysis. Journal of Marketing, 1982. 46(2): p. 82-91.
[89] Baesens, B., et al., Benchmarking state-of-the-art classification algorithms for credit scoring. Journal of the operational research society, 2003. 54(6): p. 627-635.
[90] Altman Edward, I., G. Haldeman Robert, and P. Narayanan, Zeta analysis: A new model to identify bankruptcy risk of corporations. Journal of Banking and Financial, 1977. 7: p. 29-54.
[91] Eisenbeis, R.A., Problems in applying discriminant analysis in credit scoring models. Journal of Banking & Finance, 1978. 2(3): p. 205-219.
[92] Mileris, R., Estimation of loan applicants default probability applying discriminant analysis and simple Bayesian classifier. Ekonomika ir vadyba, 2010(15): p. 1078-1084.
[93] Altman, E.I. and A. Saunders, Credit risk measurement: Developments over the last 20 years. Journal of banking & finance, 1997. 21(11-12): p. 1721-1742.
[94] Kumar, K. and S. Bhattacharya, Artificial neural network vs linear discriminant analysis in credit ratings forecast: A comparative study of prediction performances. Review of Accounting and Finance, 2006.
[95] Arminger, G., D. Enache, and T. Bonne, Analyzing credit risk data: A comparison of logistic discrimination, classification tree analysis, and feedforward networks. Computational Statistics, 1997. 12(2).
[96] Joanes, D.N., Reject inference applied to logistic regression for credit scoring. IMA Journal of Management Mathematics, 1993. 5(1): p. 35-43.
[97] Khemais, Z., D. Nesrine, and M. Mohamed, Credit scoring and default risk prediction: A comparative study between discriminant analysis & logistic regression. International Journal of Economics and Finance, 2016. 8(4): p. 39.
[98] Crook, J.N., D.B. Edelman, and L.C. Thomas, Recent developments in consumer credit risk assessment. European Journal of Operational Research, 2007. 183(3): p. 1447-1465.
[99] Hand, D.J., Modelling consumer credit risk. IMA Journal of Management mathematics, 2001. 12(2): p. 139-155.
[100] Kruppa, J., et al., Consumer credit risk: Individual probability estimates using machine learning. Expert Systems with Applications, 2013. 40(13): p. 5125-5131.
[101] Martin, D., Early warning of bank failure: A logit regression approach. Journal of banking & finance, 1977. 1(3): p. 249-276.
[102] Zmijewski, M.E., Methodological issues related to the estimation of financial distress prediction models. Journal of Accounting research, 1984: p. 59-82.
[103] Svabova, L., et al., Business Failure Prediction for Slovak Small and Medium-Sized Companies. Sustainability, 2020. 12(11): p. 4572.
[104] Awoyemi, J.O., A.O. Adetunmbi, and S.A. Oluwadare. Credit card fraud detection using machine learning techniques: A comparative analysis. in 2017 International Conference on Computing Networking and Informatics (ICCNI). 2017. IEEE.
[105] Krichene, A., Using a naive Bayesian classifier methodology for loan risk assessment: Evidence from a Tunisian commercial bank. Journal of Economics, Finance and Administrative Science, 2017.
[106] Ferdousy, E.Z., M.M. Islam, and M.A. Matin, Combination of naive bayes classifier and K-Nearest Neighbor (cNK) in the classification based predictive models. Computer and information science, 2013. 6(3): p. 48.
[107] Antonakis, A. and M. Sfakianakis, Assessing naive Bayes as a method for screening credit applicants. Journal of applied Statistics, 2009. 36(5): p. 537-545.
[108] Panigrahi, S., et al., Credit card fraud detection: A fusion approach using Dempster–Shafer theory and Bayesian learning. Information Fusion, 2009. 10(4): p. 354-363.
[109] Shawe-Taylor, J. and N. Cristianini, An introduction to support vector machines and other kernel-based learning methods. Vol. 204. 2000: Volume.
[110] Belousov, A., S. Verzakov, and J. Von Frese, Applicational aspects of support vector machines. Journal of Chemometrics: A Journal of the Chemometrics Society, 2002. 16(8‐10): p. 482-489.
[111] Kecman, V., Support vector machines–an introduction, in Support vector machines: theory and applications. 2005, Springer. p. 1-47.
[112] Gunn, S.R., Support vector machines for classification and regression. ISIS technical report, 1998. 14(1): p. 5-16.
[113] Wang, L., Support vector machines: theory and applications. Vol. 177. 2005: Springer Science & Business Media.
[114] Fan, A. and M. Palaniswami. Selecting bankruptcy predictors using a support vector machine approach. in Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium. 2000. IEEE.
[115] Carrizosa, E., C. Molero-Río, and D.R. Morales, Mathematical optimization in classification and regression trees. Top, 2021. 29(1): p. 5-33.
[116] Strobl, C., J. Malley, and G. Tutz, An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests. Psychological methods, 2009. 14(4): p. 323.
[117] Timofeev, R., Classification and regression trees (CART) theory and applications. Humboldt University, Berlin, 2004: p. 1-40.
[118] Loh, W.Y., Fifty years of classification and regression trees. International Statistical Review, 2014. 82(3): p. 329-348.
[119] Polikar, R., Ensemble learning, in Ensemble machine learning. 2012, Springer. p. 1-34.
[120] Sagi, O. and L. Rokach, Ensemble learning: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2018. 8(4): p. e1249.
[121] Dong, X., et al., A survey on ensemble learning. Frontiers of Computer Science, 2020. 14(2): p. 241-258.
[122] Zhang, C. and Y. Ma, Ensemble machine learning: methods and applications. 2012: Springer.
[123] Friedman, J., T. Hastie, and R. Tibshirani, The elements of statistical learning. Vol. 1. 2001: Springer series in statistics New York.
[124] Hastie, T., R. Tibshirani, and J. Friedman, Ensemble learning, in The elements of statistical learning. 2009, Springer. p. 605-624.
[125] Breiman, L., Bagging predictors. Machine learning, 1996. 24(2): p. 123-140.
[126] Schapire, R.E. A brief introduction to boosting. in Ijcai. 1999. Citeseer.
[127] Tsai, C.-F., Y.-F. Hsu, and D.C. Yen, A comparative study of classifier ensembles for bankruptcy prediction. Applied Soft Computing, 2014. 24: p. 977-984.
[128] Loan, T.D.P., Credit default risk prediction using boosting algorithms. 2019, International University-HCMC.
[129] COŞER, A., M.M. Maer-matei, and C. ALBU, PREDICTIVE MODELS FOR LOAN DEFAULT RISK ASSESSMENT. Economic Computation & Economic Cybernetics Studies & Research, 2019. 53(2).
[130] Ruan, S., J. Zhang, and W. Li, CUS-LightGBM-based financial distress prediction for small-and medium-sized enterprises with imbalanced data. 2021.
[131] Kohonen, T., The′neural′phonetic typewriter. computer, 1988. 21(3): p. 11-22.
[132] Schmidhuber, J., Deep learning in neural networks: An overview. Neural networks, 2015. 61: p. 85-117.
[133] Atiya, A.F., Bankruptcy prediction for credit risk using neural networks: A survey and new results. IEEE Transactions on neural networks, 2001. 12(4): p. 929-935.
[134] Tam, K.Y. and M.Y. Kiang, Managerial applications of neural networks: the case of bank failure predictions. Management science, 1992. 38(7): p. 926-947.
[135] Yu, L., S. Wang, and K.K. Lai, Credit risk assessment with a multistage neural network ensemble learning approach. Expert systems with applications, 2008. 34(2): p. 1434-1444.
[136] Huang, Z., et al., Credit rating analysis with support vector machines and neural networks: a market comparative study. Decision support systems, 2004. 37(4): p. 543-558.
[137] Boguslauskas, V. and R. Mileris, Estimation of credit risk by artificial neural networks models. Engineering economics, 2009. 64(4).
[138] Odom, M.D. and R. Sharda. A neural network model for bankruptcy prediction. in 1990 IJCNN International Joint Conference on neural networks. 1990. IEEE.
[139] Shumway, T., Forecasting bankruptcy more accurately: A simple hazard model. The journal of business, 2001. 74(1): p. 101-124.
[140] Zoričák, M., et al., Bankruptcy prediction for small-and medium-sized companies using severely imbalanced datasets. Economic Modelling, 2020. 84: p. 165-176.
[141] Altman, E.I., et al., A race for long horizon bankruptcy prediction. Applied Economics, 2020: p. 1-20.
[142] Balcaen, S. and H. Ooghe, 35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems. The British Accounting Review, 2006. 38(1): p. 63-93.
[143] Argenti, J., Corporate collapse. 1976: Wiley.
[144] Luoma, M. and E. Laitinen, Survival analysis as a tool for company failure prediction. Omega, 1991. 19(6): p. 673-678.
[145] Ooghe, H. and S. De Prijcker, Failure processes and causes of company bankruptcy: a typology. Management decision, 2008.
[146] Crutzen, N. and D. Van Caillie, The business failure process: an integrative model of the literature. Review of Business and Economics, 2008. 53(3): p. 287-316.
[147] Laitinen, E.K. and O. Lukason, Do firm failure processes differ across countries: evidence from Finland and Estonia. Journal of Business Economics and Management, 2014. 15(5): p. 810-832.
[148] Lukason, O. and E.K. Laitinen, Firm failure processes and components of failure risk: An analysis of European bankrupt firms. Journal of Business Research, 2019. 98: p. 380-390.
[149] Lane, W.R., S.W. Looney, and J.W. Wansley, An application of the Cox proportional hazards model to bank failure. Journal of Banking & Finance, 1986. 10(4): p. 511-531.
[150] Narain, B., Survival analysis and the credit granting decision. LC Thomas, JN Crook, DB Edelman, eds. Credit Scoring and Credit Control. 1992, OUP, Oxford, UK.
[151] Lee, S.H. and J.L. Urrutia, Analysis and prediction of insolvency in the property-liability insurance industry: A comparison of logit and hazard models. Journal of Risk and insurance, 1996: p. 121-130.
[152] Banasik, J., J.N. Crook, and L.C. Thomas, Not if but when will borrowers default. Journal of the Operational Research Society, 1999. 50(12): p. 1185-1190.
[153] Stepanova, M. and L. Thomas, Survival analysis methods for personal loan data. Operations Research, 2002. 50(2): p. 277-289.
[154] Bellotti, T. and J. Crook, Forecasting and stress testing credit card default using dynamic models. International Journal of Forecasting, 2013. 29(4): p. 563-574.
[155] Jarrow, R.A., D. Lando, and S.M. Turnbull, A Markov model for the term structure of credit risk spreads. The review of financial studies, 1997. 10(2): p. 481-523.
[156] Reboredo, J.C., Bank solvency evaluation with a Markov model. Applied Financial Economics, 2002. 12(5): p. 337-345.
[157] Duffie, D., L. Saita, and K. Wang, Multi-period corporate default prediction with stochastic covariates. Journal of Financial Economics, 2007. 83(3): p. 635-665.
[158] Volkov, A., D.F. Benoit, and D. Van den Poel, Incorporating sequential information in bankruptcy prediction with predictors based on Markov for discrimination. Decision Support Systems, 2017. 98: p. 59-68.
[159] Han, J., J. Pei, and M. Kamber, Data mining: concepts and techniques. 2011: Elsevier.
[160] Borgwardt, K.M., H.-P. Kriegel, and P. Wackersreuther. Pattern mining in frequent dynamic subgraphs. in Sixth International Conference on Data Mining (ICDM′06). 2006. IEEE.
[161] Batal, I., et al. Mining recent temporal patterns for event detection in multivariate time series data. in Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. 2012.
[162] Fu, T.-c., A review on time series data mining. Engineering Applications of Artificial Intelligence, 2011. 24(1): p. 164-181.
[163] Zhao, Q. and S.S. Bhowmick, Sequential pattern mining: A survey. ITechnical Report CAIS Nayang Technological University Singapore, 2003. 1(26): p. 135.
[164] Al-Maolegi, M. and B. Arkok, An improved Apriori algorithm for association rules. arXiv preprint arXiv:1403.3948, 2014.
[165] Agrawal, R. and R. Srikant. Fast algorithms for mining association rules. in Proc. 20th int. conf. very large data bases, VLDB. 1994. Citeseer.
[166] Srikant, R. and R. Agrawal. Mining sequential patterns: Generalizations and performance improvements. in International Conference on Extending Database Technology. 1996. Springer.
[167] Zhang, M., et al. A GSP-based efficient algorithm for mining frequent sequences. in Proc. of ic-ai. 2001.
[168] Zaki, M.J., SPADE: An efficient algorithm for mining frequent sequences. Machine learning, 2001. 42(1-2): p. 31-60.
[169] Verma, M. and D. Mehta, Sequential Pattern Mining: A Comparison between GSP, SPADE and Prefix SPAN 1. 2014.
[170] Han, J., J. Pei, and X. Yan, Sequential pattern mining by pattern-growth: Principles and extensions, in Foundations and Advances in Data Mining. 2005, Springer. p. 183-220.
[171] Han, J., et al. Prefixspan: Mining sequential patterns efficiently by prefix-projected pattern growth. in proceedings of the 17th international conference on data engineering. 2001. Citeseer.
[172] Liu, P.-y., W. Gong, and X. Jia. An improved prefixspan algorithm research for sequential pattern mining. in 2011 IEEE international symposium on IT in medicine and education. 2011. IEEE.
[173] García, V., A.I. Marqués, and J.S. Sánchez. Improving risk predictions by preprocessing imbalanced credit data. in International conference on neural information processing. 2012. Springer.
[174] Yu, L., et al., A DBN-based resampling SVM ensemble learning paradigm for credit classification with imbalanced data. Applied Soft Computing, 2018. 69: p. 192-202.
[175] Liu, A., J. Ghosh, and C.E. Martin. Generative Oversampling for Mining Imbalanced Datasets. in DMIN. 2007.
[176] Manevitz, L.M. and M. Yousef, One-class SVMs for document classification. Journal of machine Learning research, 2001. 2(Dec): p. 139-154.
[177] Mobray, A.H., R.H. Blanchard, and C.A. Williams, Insurance: its theory and practice in the United States. 1969: McGraw-Hill.
[178] Thomas, L.C., D.B. Edelman, and J.N. Crook, Credit scoring and its applications. 2002: SIAM.
[179] Agrawal, R. and R. Srikant. Mining sequential patterns. in Proceedings of the eleventh international conference on data engineering. 1995. IEEE.
[180] Pei, J., et al., Mining sequential patterns by pattern-growth: The prefixspan approach. IEEE Transactions on knowledge and data engineering, 2004. 16(11): p. 1424-1440.
[181] Ayres, J., et al. Sequential pattern mining using a bitmap representation. in Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining. 2002.
[182] Yang, Z. and M. Kitsuregawa. LAPIN-SPAM: An improved algorithm for mining sequential pattern. in 21st International Conference on Data Engineering Workshops (ICDEW′05). 2005. IEEE.
[183] Fournier-Viger, P., et al. Fast vertical mining of sequential patterns using co-occurrence information. in Pacific-Asia Conference on Knowledge Discovery and Data Mining. 2014. Springer.
[184] Cohen, W.W., Fast effective rule induction, in Machine learning proceedings 1995. 1995, Elsevier. p. 115-123.
[185] Friedman, J.H., Greedy function approximation: a gradient boosting machine. Annals of statistics, 2001: p. 1189-1232.
[186] 李航, 统计学习方法. 2012: Qing hua da xue chu ban she.
[187] Ke, G., et al. Lightgbm: A highly efficient gradient boosting decision tree. in Advances in neural information processing systems. 2017.
[188] Breiman, L.F., et al., CJ, 1984. Classification and regression trees. Pacific Grove, Kalifornien, 1983.
[189] Lukason, O., Age and size dependencies of firm failure processes: an analysis of bankrupted Estonian firms. International Journal of Law and Management, 2018.
[190] Platt, H.D. and M.B. Platt, A note on the use of industry-relative ratios in bankruptcy prediction. Journal of Banking & Finance, 1991. 15(6): p. 1183-1194.
[191] Ashbaugh-Skaife, H., D.W. Collins, and R. LaFond, The effects of corporate governance on firms’ credit ratings. Journal of accounting and economics, 2006. 42(1-2): p. 203-243.
[192] Lerman, P., Fitting segmented regression models by grid search. Journal of the Royal Statistical Society: Series C (Applied Statistics), 1980. 29(1): p. 77-84.
[193] Nwogugu, M., Decision-making, risk and corporate governance: A critique of methodological issues in bankruptcy/recovery prediction models. Applied Mathematics and Computation, 2007. 185(1): p. 178-196.
指導教授 許秉瑜(Ping-Yu Hsu) 審核日期 2022-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明