博碩士論文 107521012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.218.10.21
姓名 戴立言(Li-Yen Tai)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 二維量子點陣列的熱二極體
(Thermal diodes made of 2-D quantum dot arrays)
相關論文
★ 可實現 2.3V大記憶視窗(每單元3位元)、可立即讀取並具有????^??次寫入之鐵電電晶體及其在機器學習之高精確度研究★ 矽鍺/矽異質接面動態臨界電壓電晶體及矽鍺源/汲極結構之研製
★ 量子點的電子能階★ 應用於數位電視頻帶之平衡不平衡轉換器設計
★ 單電子電晶體之元件特性模擬★ 半導體量子點之穿隧電流
★ 有機非揮發性記憶體之量測與分析★ 鍺奈米線與矽奈米線電晶體之研製
★ 選擇性氧化複晶矽鍺奈米結構形成鍺量子點及在單電子電晶體之應用★ 以微控制器為基礎的智慧型跑步機系統研製
★ 單電子電晶體耦合量子點的負微分電導效應★ 單電子電晶體的熱電效應
★ 多量子點系統之熱電效應★ 多量子點系統之熱整流效應
★ 單電子電晶體在有限溫度下的模擬★ 分子電晶體之穿隧電流與熱電效應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 為了得到良好的熱整流特性,許多科學家在低維度的系統下研究熱二極體。為了能作為實際應用,本論文探討了非線性響應下二維量子點超晶格奈米線(SLNWs)陣列的熱二極體性質。我們使用非平衡態格林函數的方法研究連接電極的超晶格奈米線陣列的傳輸特性。驗證了在不對稱量子點能階排列的超晶格奈米線陣列中可以觀察到電子熱整流現象。超晶格奈米線陣列的熱二極體特性歸因於隨著溫差的方向而有大小變化的傳輸係數。電子熱流分別在順向溫度偏壓和逆向溫度偏壓顯現了熱導體和熱絕緣體的特徵。本論文闡明了二維量子點系統中y方向電子躍遷強度對熱二極體系統的影響。我們也發現到熱離子輔助穿隧程序(TATP)對觀察到本系統的電子熱整流效應有著顯著的影響。
摘要(英) In order to get a high heat rectification ratio, many scientists studied heat diodes in low-dimensional systems. For realistic applications , we investigated the nonlinear electron heat transport in 2-D quantum dot (QD) superlattice nanowires (SLNWs) arrays in this thesis. The nonequilibrium Green-functions technique is used to study the transport properties of an SLNW array junction coupled to the metallic electrodes. It is demonstrated that the electron heat rectification can be observed in an SLNWs array with asymmetrical alignment of energy levels in QDs. The SLNWs arrays show the functionality of heat diodes, which is mainly attributed to a transmission coefficient with a temperature-bias direction dependent characteristic. Electron heat current shows the features of thermal conductors and thermal insulators under the forward temperature bias and reverse temperature bias, respectively. This thesis clarifies the effects of the electron hopping strength in the y direction on electron heat currents. We also find the thermionically-assisted tunneling procedure plays a remarkable role in observing electron heat rectification of such a junction system.
關鍵字(中) ★ 熱二極體
★ 量子點陣列
★ 量子點奈米線
關鍵字(英) ★ heat diodes
★ quantum dot arrays
★ quantum dot nanowires
論文目次 摘要 i
Abstract ii
圖目錄 v
表目錄 vii
第一章、導論 1
1-1 前言 1
1-2 熱流二極體簡介 2
1-3 文獻回顧 4
1-4 研究動機 5
第二章、系統模型與公式推導 6
2-1 二維量子點陣列系統 6
2-2 系統電子總能 7
2-3 電子流與電子熱流 9
2-4 電子傳輸係數 11
第三章、二維熱二極體系統特性分析 12
3-1 前言 12
3-2 系統溫差對電子熱流及熱整流率之影響 13
3-3 量子點間能階差對熱整流效率的影響 14
3-4 縱向電子躍遷強度對系統的影響 17
3-5 熱離子輔助穿隧對系統的影響 19
第四章、結論 21
附錄 22
參考文獻 26
參考文獻 [1] M. Terraneo, M. Peyrard, and G. Casati, “Controlling the energy flow in Nonlinear lattices: A model for a thermal rectifier” ,Phys. Rev. Lett. 88, 094302 (2002).
[2] B. W. Li, L. Wang, and G. Casati, “Thermal diode: Rectification of heat flux” , Phys.
Rev. Lett. 93, 184301 (2004).
[3] J. H. Lan and B. W. Li, “Size-dependent thermal conductivity of nanoscale semiconducting systems”, Phys. Rev. B 74, 214305 (2006).
[4] S. Pal and I. K. Puri, “Thermal rectification in a polymer-functionalized single-wall carbon nanotube” , Nanotechnology 25, 8 (2014).
[5] X. Cartoixa, L. Colombo, and R. Rurali, “Thermal Rectification by Design in
Telescopic Si Nanowires” , Nano Lett. 15, 8255 (2015).
[6] Y. Li, X. Y. Shen, Z. H. Wu, J. Y. Huang, Y. X. Chen, Y. S. Ni, and J. P.
Huang, “Temperature-Dependent Transformation Thermotics: From Switchable Thermal Cloaks to Macroscopic Thermal Diodes” , Phys. Rev. Lett. 115, 195503 (2015).
[7] C. L. Chiu, C. H. Wu, B. W. Huang, C. Y. Chien and C. W. Chang, “Detecting thermal rectification” ,AIP ADVANCES 6, 121901 (2016).
[8] C. R. Otey, W. T. Lau, and S. H. Fan, “Thermal Rectification through Vacuum” , Phys. Rev. Lett. 104, 154301 (2010).
[9] D. M.-T. Kuo and Y. C. Chang, “Thermoelectric and thermal rectification properties of
quantum dot junctions” ,Phys. Rev. B 81, 205321 (2010).
[10] B. Li, L. Wang, and G. Casati, “Negative differential thermal resistance and thermal transistor” ,Appl. Phys. Lett. 88, 143501 (2006).
[11] L. Wang and B. Li, “Thermal Logic Gates: Computation with Phonons”, Phys. Rev. Lett. 99, 177208 (2007).
[12] C. Starr, “The Copper Oxide Rectifier”, J. Appl. Phys. 7, 15 (1936).
[13] C. W. Chang, D. Okawa, A. Majumdar, and A. Zettl, “Solid-State Thermal Rectifier”, Science 314, 1121 (2006).
[14] K. Ito, K. Nishikawa, H. Iizuka, and H. Toshiyoshi, “Experimental investigation of radiative thermal rectifier using vanadium dioxide” ,Appl. Phys. Lett. 105, 253503 (2014).
[15] M. J. Martinez-Perez, A. Fornieri, and F. Giazotto, “Rectification of electronic heat current by a hybrid thermal diode” , Nature Nanotech. 10, 303 (2015).
[16] Y. Guerfi and G. Larrieu, “ Vertical Silicon Nanowire Field Effect Transistors with Nanoscale Gate-All-Around” ,Nanoscale Research Letters 11,210 (2016).
[17] H. Haug and A. P. Jauho, “Quantum Kinetics in Transport and Optics of Semiconductors” (Springer, Heidelberg,1996).
[18] Y. Meir and N. S. Wingreen, “ Landauer formula for the current through an interacting electron region” ,Phys. Rev. Lett. 68, 2512 (1992).
[19] D. M. T. Kuo, “Thermoelectric and electron heat rectification properties of quantum dot superlattice nanowire arrays” , AIP Advances 10, 045222 (2020).
[20] B. H. Teng, H. K. Sy, Z. C. Wang, Y. Q. Sun, H. C. Yang, “Exact analytical solution to the electronic transport in an N-coupled quantum dot array” , Phy. Rev. B 75, 012105 (2007).
[21] Y. Liu, Y. S. Zheng, W. J. Gong, W. H Gao and T. Q. Lu, “Electronic transport through a quantum dot chain with strong dot-lead coupling” ,Phys. Lett. A 365, 495 (2007).
[22] M. Hu and D. Poulikakos, “Si/Ge Superlattice Nanowires with Ultralow Thermal Conductivity” , Nano. Lett. 12, 5487 (2012).
[23] D. M. T. Kuo, and Y. C. Chang, the proceding of NMDC 2018 Portland.
指導教授 郭明庭(Ming-Ting Kuo) 審核日期 2020-7-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明