參考文獻 |
[1] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, California, USA.
[2] Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019, jun). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers) Minneapolis, Minnesota.
[3] Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 257-286.
[4] Berger, A. L., Della Pietra, S. A., & Della Pietra, V. J. (1996). A Maximum Entropy Approach to Natural Language Processing [journal article]. Computational Linguistics, 22(1), 39-71.
[5] Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J., & Scholkopf, B. (1998). Support vector machines. IEEE Intelligent Systems and their Applications, 13(4), 18-28.
[6] Lafferty, J., McCallum, A., & Pereira, F. (2001). Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data.
[7] Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533-536.
[8] Hochreiter, S., & Schmidhuber, J. (1997). Long Short-term Memory. Neural computation, 9, 1735-1780.
[9] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. s., & Dean, J. (2013). Distributed Representations of Words and Phrases and their Compositionality. Advances in Neural Information Processing Systems, 26.
[10] Pennington, J., Socher, R., & Manning, C. (2014, oct). GloVe: Global Vectors for Word Representation.Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) Doha, Qatar.
[11] Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching Word Vectors with Subword Information [journal article]. Transactions of the Association for Computational Linguistics, 5, 135-146.
[12] Dale, R., & Kilgarriff, A. (2011, sep). Helping Our Own: The HOO 2011 Pilot Shared Task.Proceedings of the 13th European Workshop on Natural Language Generation Nancy, France.
[13] Dale, R., Anisimoff, I., & Narroway, G. (2012). HOO 2012: a report on the preposition and determiner error correction shared task.
[14] Ng, H. T., Wu, S. M., Wu, Y., Hadiwinoto, C., & Tetreault, J. (2013, aug). The CoNLL-2013 Shared Task on Grammatical Error Correction.Proceedings of the Seventeenth Conference on Computational Natural Language Learning: Shared Task Sofia, Bulgaria.
[15] Ng, H. T., Wu, S. M., Briscoe, T., Hadiwinoto, C., Susanto, R. H., & Bryant, C. (2014, jun). The CoNLL-2014 Shared Task on Grammatical Error Correction.Proceedings of the Eighteenth Conference on Computational Natural Language Learning: Shared Task Baltimore, Maryland.
[16] Yu, L.-C., Lee, L.-H., & Chang, L. (2014). Overview of Grammatical Error Diagnosis for Learning Chinese as a Foreign Language.
[17] Lee, L.-H., Yu, L.-C., & Chang, L.-P. (2015, jul). Overview of the NLP-TEA 2015 Shared Task for Chinese Grammatical Error Diagnosis.Proceedings of the 2nd Workshop on Natural Language Processing Techniques for Educational Applications Beijing, China.
[18] Lee, L.-H., Rao, G., Yu, L.-C., Xun, E., Zhang, B., & Chang, L.-P. (2016, dec). Overview of NLP-TEA 2016 Shared Task for Chinese Grammatical Error Diagnosis.Proceedings of the 3rd Workshop on Natural Language Processing Techniques for Educational Applications (NLPTEA2016) Osaka, Japan.
[19] Bryant, C., Felice, M., Andersen, Ø. E., & Briscoe, T. (2019, aug). The BEA-2019 Shared Task on Grammatical Error Correction.Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications Florence, Italy.
[20] Daudaravicius, V., Banchs, R. E., Volodina, E., & Napoles, C. (2016, jun). A Report on the Automatic Evaluation of Scientific Writing Shared Task.Proceedings of the 11th Workshop on Innovative Use of NLP for Building Educational Applications San Diego, CA.
[21] Leydesdorff, L. (1998). Theories of citation? Scientometrics, 43(1), 5-25.
[22] Li, Z., & Ho, Y.-S. (2008). Use of citation per publication as an indicator to evaluate contingent valuation research. Scientometrics, 75(1), 97-110.
[23] Small, H. (2018). Characterizing highly cited method and non-method papers using citation contexts: The role of uncertainty. Journal of Informetrics, 12(2), 461-480.
[24] Ritchie, A. (2009). Citation context analysis for information retrieval.
[25] Cohan, A., & Goharian, N. (2017). Scientific article summarization using citation-context and article′s discourse structure. arXiv preprint arXiv:1704.06619.
[26] Jurgens, D., Kumar, S., Hoover, R., McFarland, D., & Jurafsky, D. (2018). Measuring the evolution of a scientific field through citation frames. Transactions of the Association for Computational Linguistics, 6, 391-406.
[27] Cohan, A., Ammar, W., Van Zuylen, M., & Cady, F. (2019). Structural scaffolds for citation intent classification in scientific publications. arXiv preprint arXiv:1904.01608.
[28] Ammar, W., Groeneveld, D., Bhagavatula, C., Beltagy, I., Crawford, M., Downey, D., Dunkelberger, J., Elgohary, A., Feldman, S., & Ha, V. (2018). Construction of the literature graph in semantic scholar. arXiv preprint arXiv:1805.02262.
[29] Li, L., Xie, Y., Liu, W., Liu, Y., Jiang, Y., Qi, S., & Li, X. (2020, nov). CIST@CL-SciSumm 2020, LongSumm 2020: Automatic Scientific Document Summarization.Proceedings of the First Workshop on Scholarly Document Processing Online.
[30] Grundkiewicz, R., Junczys-Dowmunt, M., & Heafield, K. (2019, aug). Neural Grammatical Error Correction Systems with Unsupervised Pre-training on Synthetic Data.Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications Florence, Italy.
[31] Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.
[32] Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., & Kang, J. (2020). BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics, 36(4), 1234-1240.
[33] Alsentzer, E., Murphy, J., Boag, W., Weng, W.-H., Jindi, D., Naumann, T., & McDermott, M. (2019, jun). Publicly Available Clinical BERT Embeddings.Proceedings of the 2nd Clinical Natural Language Processing Workshop Minneapolis, Minnesota, USA.
[34] Beltagy, I., Lo, K., & Cohan, A. (2019, nov). SciBERT: A Pretrained Language Model for Scientific Text.Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) Hong Kong, China.
[35] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019). RoBERTa: A Robustly Optimized BERT Pretraining Approach. ArXiv, abs/1907.11692.
[36] Clark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators.
[37] Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., & Bowman, S. (2018, nov). GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding.Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP Brussels, Belgium.
[38] Jiang, Z., Yu, W., Zhou, D., Chen, Y., Feng, J., & Yan, S. (2020). ConvBERT: Improving BERT with Span-based Dynamic Convolution. ArXiv, abs/2008.02496.
[39] Wu, F., Fan, A., Baevski, A., Dauphin, Y. N., & Auli, M. (2019). Pay less attention with lightweight and dynamic convolutions. arXiv preprint arXiv:1901.10430.
[40] Tay, Y., Bahri, D., Metzler, D., Juan, D.-C., Zhao, Z., & Zheng, C. (2020). Synthesizer: Rethinking self-attention in transformer models. arXiv preprint arXiv:2005.00743.
[41] Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., & Liu, P. J. (2019). Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683.
[42] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861.
[43] Lo, K., Wang, L. L., Neumann, M., Kinney, R., & Weld, D. (2020, jul). S2ORC: The Semantic Scholar Open Research Corpus.Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics Online.
[44] Ammar, W., Groeneveld, D., Bhagavatula, C., Beltagy, I., Crawford, M., Downey, D., Dunkelberger, J., Elgohary, A., Feldman, S., Ha, V., Kinney, R., Kohlmeier, S., Lo, K., Murray, T., Ooi, H.-H., Peters, M., Power, J., Skjonsberg, S., Wang, L., Wilhelm, C., Yuan, Z., van Zuylen, M., & Etzioni, O. (2018, jun). Construction of the Literature Graph in Semantic Scholar.Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 3 (Industry Papers) New Orleans - Louisiana.
[45] Shen, Z., Ma, H., & Wang, K. (2018, jul). A Web-scale system for scientific knowledge exploration.Proceedings of ACL 2018, System Demonstrations Melbourne, Australia.
[46] Witte, R., & Sateli, B. (2016, jun). Combining Off-the-shelf Grammar and Spelling Tools for the Automatic Evaluation of Scientific Writing (AESW) Shared Task 2016.Proceedings of the 11th Workshop on Innovative Use of NLP for Building Educational Applications San Diego, CA.
[47] Remse, M., Mesgar, M., & Strube, M. (2016, jun). Feature-Rich Error Detection in Scientific Writing Using Logistic Regression.Proceedings of the 11th Workshop on Innovative Use of NLP for Building Educational Applications San Diego, CA.
[48] Flickinger, D., Goodman, M., & Packard, W. (2016, jun). UW-Stanford System Description for AESW 2016 Shared Task on Grammatical Error Detection.Proceedings of the 11th Workshop on Innovative Use of NLP for Building Educational Applications San Diego, CA.
[49] Mamani Sanchez, L., & Franco-Penya, H.-H. (2016, jun). Combined Tree Kernel-based classifiers for Assessing Quality of Scientific Text.Proceedings of the 11th Workshop on Innovative Use of NLP for Building Educational Applications San Diego, CA.
[50] Lee, L.-H., Lin, B.-L., Yu, L.-C., & Tseng, Y.-H. (2016, jun). The NTNU-YZU System in the AESW Shared Task: Automated Evaluation of Scientific Writing Using a Convolutional Neural Network.Proceedings of the 11th Workshop on Innovative Use of NLP for Building Educational Applications San Diego, CA.
[51] Schmaltz, A., Kim, Y., Rush, A. M., & Shieber, S. (2016, jun). Sentence-Level Grammatical Error Identification as Sequence-to-Sequence Correction.Proceedings of the 11th Workshop on Innovative Use of NLP for Building Educational Applications San Diego, CA.
[52] Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2019). Albert: A lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942.
[53] Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). Xlnet: Generalized autoregressive pretraining for language understanding. Advances in Neural Information Processing Systems, 32. |