參考文獻 |
Australian Curriculum, Assessment and Reporting Authority [ACARA]. (2013). Draft Australian Curriculum: Technologies. Retrieved May 27, 2020, from https://docs.acara.edu.au/resources/Draft_Australian_Curriculum_Technologies_-_Consultation_Report_-_August_2013.pdf.
Achilleos, A.P., Mettouris, C., Yeratziotis, A., Papadopoulos, G.A., Pllana, S., Huber, F., Jäger, B., Leitner, P. Ocsovszky, Z., & Dinnyés, A. (2019). SciChallenge: A social media aware platform for contest-based STEM education and motivation of young students. IEEE Transactions on Learning Technologies, 12(1), 98-111. doi: 10.1109/TLT.2018.2810879
All, A., Plovie, B., Castellar, E. P. N., & Van Looy, J. (2017). Pre-test influences on the effectiveness of digital-game based learning: A case study of a fire safety game. Computers & Education, 114, 24-37.
Araque, F., Roldan, C., & Salguero, A. (2019). Factors influencing university drop out rates. Computer & Education, 53, 563-574. doi: 10.1016/j.compedu.2009.03.013
Baker, R. (2012). Data mining for education. In B. Mcgaw, P. Peterson & E. Baker (Eds.), International encyclopedia of education (3rd ed.), UK: Oxford.
Bransford, J. D., & Stein, B. S. (1993). The ideal problem solver: A guide for improving thinking, learning, and creativity (2nd ed.). New York: W.H. Freeman.
Chatisfy. (2020). Chatisfy. Retrieved May 27, 2020, from https://www.chatisfy.com/
Computer Science Teachers Association [CSTA]. (2017). K-12 Computer Science Standards. Retrieved May 27, 2020, from https://www.doe.k12.de.us/cms/lib/DE01922744/Centricity/Domain/176/CSTA%20Computer%20Science%20Standards%20Revised%202017.pdf
Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika 16, 297–334. doi: 10.1007/BF02310555
Costelloe, E. (2004). Teaching programming the state of the art. Retrieved May 27, 2020, from https://www.scss.tcd.ie/disciplines/information_systems/crite/crite_web/publications/sources/programmingv1.pdf
Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems, 2(4), 303-314.
Calvo, I., Cabanes, I., Quesada, J., & Barambones, O. (2018). A multidisciplinary PBL approach for teaching industrial informatics and robotics in engineering. IEEE Transactions on Education, 61(1), 21-28. doi: 10.1109/TE.2017.2721907
Chen S. -Y., Lai C. -F., Lai Y. -H., & Su Y. -S. (Accepted, 2019). Effect of project-based learning on development of students’ creative thinking. International Journal of Electrical Engineering Education. doi: 10.1177/0020720919846808
Comaniciu, D., & Peter M. (2002). Mean Shift: A Robust Approach Toward Feature Space Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5), 603-619. doi: 10.1109/34.1000236
Chonkaew, P., Sukhummek, B., & Faikhamta, C. (2016). Development of analytical thinking ability and attitudes towards science learning of grade-11 students through science technology engineering and mathematics (STEM education) in the study of stoichiometry. Chemistry Education Research and Practice, 17(4), 842-861. doi: 10.1039/C6RP00074F
Cortes, C. & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297. doi: 10.1007/BF00994018.
Chen, H.-L., Widarso, G., & Sutrisno, H. (2020). A ChatBot for learning chinese: Learning achievement and technology acceptance. Journal of Educational Computing Research, 58(6), 1161-1189. doi: 10.1177/0735633120929622.
dos Santos, S.C. (2017). PBL-SEE: An authentic assessment model for PBL-based software engineering education. IEEE Transactions on Education, 60(2), 120-126. doi: 10.1109/TE.2016.2604227
Díez, L. F., Valencia, A., & Bermudez, J. (2017). Agent-based model for the analysis of technological acceptance of mobilelearning, IEEE Latin America Transactions, 15(6), 1121-1127, doi: 10.1109/TLA.2017.7932700.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management science, 35(8), 982-1003.
Eckel, B., Allison, C. D., & Allison, C. (2003). Thinking in C++, Vol. 2: Practical programming (2nd ed.). Upper Saddle River, NJ: Prentice Hall
Gomoll, A., Hmelo-Silver, C. E., Sabanovic, S., & Francisco, M. (2016). Dragons, ladybugs, and softballs: Girls′ STEM engagement with human-centered robotics. Journal of Science Education and Technology, 25(6), 899-914. doi: 10.1007/s10956-016-9647-z
Gao, S., Moe, S. P., & Krogstie, J. (2010). An empirical test of the mobile services acceptance model. Proceedings of the 2010 Ninth International Conference on Mobile Business and 2010 Ninth Global Mobility Roundtable (ICMB-GMR), 168-175, doi: 10.1109/ICMB-GMR.2010.51.
Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field. Educational researcher, 42(1), 38-43.
Hung, Y. -C. (2008). The effect of problem-solving instruction on computer engineering majors’ performance in Verilog programming. IEEE Transaction on Education, 51(1), 131-137. doi: 10.1109/TE.2007.906912
Hou, H. -T. (2015). Computers in human behavior integrating cluster and sequential analysis to explore learners ’ flow and behavioral patterns in a simulation game with situated-learning context for science courses : A video-based process exploration. Computers in Human Behavior, 48, 424-435.
Hsieh, J. S. C., Huang, Y. -M., & Wu, W. -C. V. (2017). Technological acceptance of LINE in flipped EFL oral training. Computers in Human Behavior, 70, 178-190.
Huang, A.Y. Q., Lu, O. H. T., Huang, J. C. H., Yin, C. J., & Yang, S. J. H. (2020). Predicting students’ academic performance by using educational big data and learning analytics: evaluation of classification methods and learning logs. Interactive Learning Environments, 28(2), 206-230. doi: 10.1080/10494820.2019.1636086
Hanley, J. A., & McNeil, B. J. (1983). A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology, 148(3), 839-843. doi: 10.1148/radiology.148.3.6878708
Hadad, R., Thomas, K., & Kachovska, M. (2020). Practicing formative assessment for Computational thinking in making Environments. J Sci Educ Technol, 29, 162-173. doi: 10.1007/s10956-019-09796-6
Hämäläinen, W., & Vinni, M. (2011). Classifiers for educational data mining. London: Chapman & Hall/CRC. doi: 10.1201/b10274-7
International Society for Technology in Education [ISTE]. (2010). Exploring computational thinking. Retrieved May 27, 2020, from https://www.google.com/edu/computational-thinking/
Klingsieck, K. B., Fries, S., Horz, C., & Hofer, M. (2012). Procrastination in a distance university setting. Distance education. Distance Education, 33(3), 295-310. doi: 10.1080/01587919.2012.723165
Landis, J., & Koch, G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159-174. doi: 10.2307/2529310
Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through programming: What is next for K-12?. Computers in Human Behavior, 41, 51-61. doi: 10.1016/j.chb.2014.09.012
LaForce, M., Noble, E., & Blackwell, C. K. (2017). Problem-based learning (PBL) and student interest in STEM careers: The roles of motivation and ability beliefs. Education Sciences, 7(4), 92. doi: 10.3390/educsci7040092
Marin, S. L. T., Garcia, F. J. B., Torres, R. M., Vazquez, S. G., & Moreno, A. J. L. (2005). Implementation of a web-based educational tool for digital signal processing teaching using the technological acceptance model. IEEE Transactions on Education, 48(4), 632-641, doi: 10.1109/TE.2005.853074.
Martínez-Torres, M. R., Marín, S. L. T., García, F. B., Vázquez, S. G., Oliva, M. A., & Torres, T. (2008). A technological acceptance of e-learning tools used in practical and laboratory teaching, according to the European higher education area, Behaviour & Information Technology, 27(6), 495-505, doi: 10.1080/01449290600958965
Mannila, L., Peltomäki, M., & Salakoski, T. (2006). What about a simple language? Analyzing the difficulties in learning to program. Computer science education, 16(3), 211-227.
Manasijevic, D., Zivkovic, D., Arsic, S., & Milošević, I. (2016). Exploring students’ purposes of usage and educational usage of Facebook. Computers in Human Behavior, 60, 441-450.
Newhouse, C. (2017). STEM the boredom: Engage students in the Australian curriculum using ICT with problem-based learning and assessment. Journal of Science Education and Technology, 26(1), 44-57. doi: 10.1007/s10956-016-9650-4
Osmanbegović, E., Suljic, M., & Agić, H. (2015). Determing dominant factors for students performance prediction by using data mining classification algorithms. Tranzicija, 16, 147-158.
Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Computational and Applied Mathematics. 20, 53-65. doi: 10.1016/0377-0427(87)90125-7
Parmar, D., Babu, S. V., Lin, L., Jörg, S., D′Souza, N., Leonard, A. E., & Daily, S. B. (2016). Can embodied interaction and virtual peer customization in a virtual programming environment enhance computational thinking?. Proceedings of the Research on Equity and Sustained Participation in Engineering, Computing, and Technology. 1-2. doi: 10.1109/RESPECT.2016.7836179
Pekrun, R., Goetz, T., Perry, R. P., Kramer, K., Hochstadt, M., & Molfenter, S. (2004). Beyond test anxiety: Development and validation of the test emotions questionnaire (TEQ). Anxiety stress & coping, 17(3), 287-316. doi: 10.1080/10615800412331303847
Powers, K., Ecott, S., & Hirshfield, L. M. (2007). Through the looking glass: Teaching CS0 with Alice. Proceedings of the 38th SIGCSE technical symposium on Computer science education, 213-217.
Rietz, T., Benke, I., & Maedche, A. (2019). The impact of anthropomorphic and functional chatbot design features in enterprise collaboration systems on user acceptance. Proceedings of the 14th International Conference on Wirtschaftsinformatik, 1642-1656.
Romero, C., Espejo, P., Romero, R., &Ventura, S. (2013). Web usage mining for predicting final marks of students that use Moodle courses. Computer Applications in Engineering, 21(1), 135-146. doi: 10.1002/cae.20456
Romero, C., & Ventura, S. (2010) Educational data mining: A review of the state of the art. IEEE Transaction on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 40(6), 601-618. doi: 10.1109/TSMCC.2010.2053532
Romero, C., & Ventura, S. (2013). Data mining in education. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 3(1), 12-27. doi: 10.1002/widm.1075
Strano, M., & Colosimo, B.M. (2006). Logistic regression analysis for experimental determination of forming limit diagrams. International Journal of Machine Tools and Manufacture, 46(6), 673-682. doi: 10.1016/j.ijmachtools.2005.07.005
Su, Y. -S., Ding, T. -J., & Lai, C. -F. (2017). Analysis of students engagement and learning performance in a social community supported computer programming course. Eurasia Journal of Mathematics, Science & Technology Education, 13(9), 6189-6201. doi: 10.12973/eurasia.2017.01058a
Stigler, J., Geller, E., & Givvin, K. (2015). Zaption: A platform to support teaching, and learning about teaching, with video. Journal of E-Learning and Knowledge Society, 11(2), 13-25. doi: 10.20368/1971-8829/1042
Sánchez, R. A., Hueros, A. D., & Ordaz, M. O. (2013). E‐learning and the University of Huelva: a study of WebCT and the technological acceptance model. Campus-wide information systems. Campus-Wide Information Systems, 30(2), 135-160. doi: 10.1108/10650741311306318
Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research Review, 22, 142-158.
Su, Y.S., Yang, J.H., Hwang, W.Y., Huang, S.J., & Tern, M.Y. (2014). Investigating the role of computer-supported annotation in problem solving based teaching: An empirical study of a scratch programming pedagogy. British Journal of Educational Technology, 45(4), 647-665. doi: 10.1111/bjet.12058
Tang, K.Y., Hsiao, C.H., & Su, Y.S. (2019). Networking for educational innovations: A bibliometric survey of international publication patterns. Sustainability, 11(17), 4608. doi: 10.3390/su11174608
Tang, K., Chou, T., & Tsai, C.(2020). A content analysis of computational thinking research: an international publication trends and research typology. Asia-Pacific Edu Res 29, 9-19. doi: 10.1007/s40299-019-00442-8
Tseng, K.-H., Chang, C.-H., Lou, S.-J., & Chen, W.-P. (2013). Attitudes towards science, technology, engineering and mathematics (STEM) in a project-based learning (PjBL) environment. International Journal of Technology and Design Education, 23(1), 87-102. doi: 10.1007/s10798-011-9160-x
Uysal, M.P. (2014). Improving first computer programming experiences: The case of adapting a web-supported and well-structured problem-solving method to a traditional course. Contemporary Educational Technology, 5(3), 198-217.
Vattani, A. (2011). K-means requires exponentially many iterations even in the plane. Discrete and Computational Geometry, 45(4), 596-616. doi: 10.1007/s00454-011-9340-1
Van Rijsbergen, C. J. (1979). Information retrieval (2nd ed.). London: Butterworths
Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A. (2015). Computational thinking in compulsory education: Towards an agenda for research and practice. Education and Information Technologies, 20(4), 715-728. doi: 10.1007/s40299-019-00442-8
Wing, J. M. (2006, March). Computational thinking. Communications of the ACM, 49(3), 33-35.
Wit.ai (2020). Wit.ai. Retrieved May 27, 2020, from https://wit.ai/
Wild, K. -P., & Schiefele, U. (1994). Lernstrategien im studium: Ergebnisse zur faktorenstruktur und reliabilität eines neuen fragebogens. Zeitschrift für Differentielle und Diagnostische Psychologie, 15(4), 185-200.
Wahyu, Y., Suastra, I. W., Sadia, I. W., & Suarni, N. K. (2020). The effectiveness of mobile augmented reality assisted STEM-based learning on scientific literacy and students’ achievement. International Journal of Instruction, 13(3), 343-356. doi: 10.29333/iji.2020.13324a
中文部分
大學程式能力檢定委員會 (民 99)。大學程式能力檢定。(民109年5月27日),取自https://cpe.cse.nsysu.edu.tw/index.php
邦妮科技 (民 109)。BotBonnie。(民109年5月27日),取自https://botbonnie.com/
林坤誼 (民 103)。STEM 科際整合教育培養整合理論與實務的科技人才。科技與人力教育季刊,1(1),1。
教育部 (民 92)。創造力教育政策白皮書。(民109年5月27日),取自https://ws.moe.edu.tw/001/Upload/3/RelFile/6315/6934/92.03%E5%89%B5%E9%80%A0%E5%8A%9B%E6%95%99%E8%82%B2%E7%99%BD%E7%9A%AE%E6%9B%B8.pdf
教育部智慧創新跨域人才培育計畫 (民 108)。大學程式設計先修檢測。(民109年5月27日),取自https://apcs.csie.ntnu.edu.tw/index.php/apcs-introduction/
教育部 (民 108)。運算思維。(民 109年5月27日) ,取自https://ossacc.moe.edu.tw/computational.php
許宜婷 (民 104)。科技教育教學內容之探討。科技與人力教育季刊,2(2),16-29。
簡紅珠 (民 99)。講述教學法,(民109年5月27日)。取自http://terms.naer.edu.tw/detail/1315014/
楊孟山、林宜玄 (民 107)。Maker 教育理論與實踐。臺灣教育評論月刊,7(2),29-38。
葉俊巖、羅希哲(民 104)。以Maker的角度來看臺灣小學的資訊教育。臺灣教育評論月刊,4(12),110-114。 |