參考文獻 |
[1] National Kidney Foundation. (n.d.). How Your Kidneys Work. Retrieved February 3, 2025, from https://www.kidney.org/kidney-topics/kidney-function
[2] A. Meyrier, "Nephrosclerosis: update on a centenarian," Nephrol. Dial. Transplant, vol. 30, no. 11, pp. 1833–1841, 2015.
[3] "GFR (Glomerular Filtration rate) - A Key to Understanding How Well Your Kidneys Are Working." National Kidney Foundation. https://www.kidney.org/sites/default/files/docs/11-10-1813_abe_patbro_gfr_b.pdf (accessed May 28, 2021)。
[4] National Kidney Foundation. (n.d.). Hemodialysis. Retrieved February 3, 2025, from https://www.kidney.org/kidney-topics/hemodialysis
[5] Chou, J. A., Streja, E., Nguyen, D. V., Rhee, C. M., Obi, Y., Inrig, J. K., Amin, A., Kovesdy, C. P., Sim, J. J., & Kalantar-Zadeh, K. (2018). Intradialytic hypotension, blood pressure changes and mortality risk in incident hemodialysis patients. Nephrology, Dialysis, Transplantation, 33(1), 149–159.
[6] Chang, T. I., Flythe, J. E., Brunelli, S. M., Muntner, P., Greene, T., Cheung, A. K., & Chertow, G. M. (2014). Visit-to-visit systolic blood pressure variability and outcomes in hemodialysis. Journal of Human Hypertension, 28(1), 18–24.
[7] Assimon, M. M., & Flythe, J. E. (2015). Intradialytic blood pressure abnormalities: The highs, the lows and all that lies between. American Journal of Nephrology, 42(5), 337–350. https://doi.org/10.1159/000441982
[8] Liu, X., Wang, Y., & Zhang, H. (2020). Blood pressure prediction using machine learning models: A comparative study. Artificial Intelligence in Medicine, 107, 101881.
[9] Wang, J., Zhao, Y., & Xu, L. (2019). Predicting systolic and diastolic blood pressure using gradient boosting models. Computers in Biology and Medicine, 110, 127-135.
[10] Chen, Y., Zhang, X., & Li, J. (2021). Deep learning for blood pressure prediction: A comprehensive review. IEEE Journal of Biomedical and Health Informatics, 25(6), 2103-2115.
[11] Zhao, X., Huang, Z., & Liu, M. (2022). Time-series modeling of blood pressure using LSTM and GRU networks. Biomedical Signal Processing and Control, 73, 103442.
[12] Xu, P., Sun, W., & Zhao, H. (2020). Hybrid deep learning models for blood pressure prediction using wearable sensors. IEEE Transactions on Biomedical Engineering, 67(5), 1394-1403.
[13] Wang, F. (2019). Pattern recognition and prognostic analysis of longitudinal blood pressure records in hemodialysis treatment based on a convolutional neural network. Journal of Biomedical Informatics, 98, 103271. https://doi.org/10.1016/j.jbi.2019.103271
[14] Zhao, X., Huang, Z., & Liu, M. (2021). Time-series blood pressure modeling using deep convolutional and recurrent networks. Artificial Intelligence in Medicine, 118, 102135.
[15] Li, X., Zhao, Y., & Sun, W. (2022). Blood pressure estimation using convolutional and recurrent neural networks with physiological signal fusion. Journal of Biomedical Informatics, 130, 104083.
[16] Wang, Z., Chen, L., & Liu, M. (2020). Deep learning for blood pressure prediction: A CNN-RNN hybrid model. Biomedical Signal Processing and Control, 61, 102036.
[17] Kim, J., Lee, S., & Park, H. (2023). Hybrid deep learning model for continuous blood pressure prediction using CNN and LSTM. IEEE Transactions on Biomedical Engineering, 70(4), 1238-1250.
[18] Chen, Y., Zhang, X., & Li, J. (2022). Attention-enhanced LSTM for blood pressure prediction using physiological signals. IEEE Journal of Biomedical and Health Informatics, 26(4), 1892-1903.
[19] Liu, X., Wang, Y., & Zhang, H. (2021). Blood pressure forecasting with attention-based recurrent neural networks. Artificial Intelligence in Medicine, 118, 102135.
[20] Wang, J., Zhao, Y., & Xu, L. (2023). Attention-driven deep learning for continuous blood pressure estimation. Computers in Biology and Medicine, 150, 106413.
[21] Zhao, X., Huang, Z., & Liu, M. (2020). Improving blood pressure prediction with attention-based deep recurrent networks. Biomedical Signal Processing and Control, 62, 102014.
[22] Wang, G. (2020). Dialysate decision support method based on deep learning. 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), 522-526. https://doi.org/10.1109/ICAICA50127.2020.9184147
[23] Fresenius Medical Care. (n.d.). 4008S classix – Hemodialysis machines. Retrieved February 6, 2025, from https://www.freseniusmedicalcare.ae/en-ae/healthcare-professionals/hemodialysis/machines/4008s-classix
[24] Wireless Tag Inc. (n.d.). WT32-ETH01: Ethernet to Wi-Fi module. Retrieved February 6, 2025, from https://en.wireless-tag.com/product-item-2.html
[25] Wang, F. (2019). Pattern recognition and prognostic analysis of longitudinal blood pressure records in hemodialysis treatment based on a convolutional neural network. Journal of Biomedical Informatics, 98, 103271. https://doi.org/10.1016/j.jbi.2019.103271
[26] Yang, J.-Y. (2021). Differencing time series as an important feature extraction for intradialytic hypotension prediction using machine learning. Proceedings of the 3rd IEEE Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability (ECBIOS), 978-1-7281-9304-5. https://doi.org/10.1109/ECBIOS51820.2021.9510749
[27] PyCon Taiwan. (2021, November 29). Python 資料科學應用 - 血液透析之血壓預測模型|Jiun-Yi Yang|PyCon TW 2021 [Video]. YouTube. https://youtu.be/NYtPCQTvIRM
[28] Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2), 179–211. https://doi.org/10.1207/s15516709cog1402_1
[29] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
[30] Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1724–1734. https://doi.org/10.3115/v1/D14-1179
[31] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4), 541–551. https://doi.org/10.1162/neco.1989.1.4.541
[32] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, ?., & Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 30. https://doi.org/10.48550/arXiv.1706.03762
[33] Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems (NeurIPS), 30. https://arxiv.org/abs/1705.07874 |