參考文獻 |
[1] D. Zhang, Z. Liu, W. Jia, H. Liu, and J. Tan, “Path Enhanced Bidirectional Graph Attention Network for Quality Prediction in Multistage Manufacturing Process,” IEEE Trans. Ind. Informatics, vol. 18, no. 2, pp. 1018–1027, 2022, doi: 10.1109/TII.2021.3076803.
[2] M. Papananias, T. E. McLeay, M. Mahfouf, and V. Kadirkamanathan, “A Bayesian framework to estimate part quality and associated uncertainties in multistage manufacturing,” Comput. Ind., vol. 105, pp. 35–47, 2019, doi: 10.1016/j.compind.2018.10.008.
[3] K. Wang, G. Li, S. Du, L. Xi, and T. Xia, “State space modeling of variation propagation in multistage machining processes for variable stiffness structure workpieces,” Int. J. Prod. Res., vol. 59, no. 13, pp. 4033–4052, 2021, doi: 10.1080/00207543.2020.1757173.
[4] L. Ma, J. Dong, K. Peng, and C. Zhang, “Hierarchical Monitoring and Root-Cause Diagnosis Framework for Key Performance Indicator-Related Multiple Faults in Process Industries,” IEEE Trans. Ind. Informatics, vol. 15, no. 4, pp. 2091–2100, 2019, doi: 10.1109/TII.2018.2855189.
[5] S. Chakraborty, M. Moore, and L. Parrillo-Chapman, “Automatic Printed Fabric Defect Detection Based on Image Classification Using Modified VGG Network,” in Advances in Simulation and Digital Human Modeling, vol. 1206, 2021, pp. 384–393.
[6] D. Mo, W. K. Wong, Z. Lai, and J. Zhou, “Weighted Double-Low-Rank Decomposition with Application to Fabric Defect Detection,” IEEE Trans. Autom. Sci. Eng., vol. 18, no. 3, pp. 1170–1190, 2021, doi: 10.1109/TASE.2020.2997718.
[7] P. Arora and M. Hanmandlu, “Detection of defects in fabrics using information set features in comparison with deep learning approaches,” J. Text. Inst., vol. 113, no. 2, pp. 266–272, 2022, doi: 10.1080/00405000.2020.1870326.
[8] F. Psarommatis and D. Kiritsis, “A hybrid Decision Support System for automating decision making in the event of defects in the era of Zero Defect Manufacturing,” J. Ind. Inf. Integr., vol. 26, p. 100263, 2022, doi: 10.1016/j.jii.2021.100263.
[9] Y. Peng et al., “Joint Scanning Electromagnetic Thermography for Industrial Motor Winding Defect Inspection and Quantitative Evaluation,” IEEE Trans. Ind. Informatics, vol. 17, no. 10, pp. 6832–6840, 2021, doi: 10.1109/TII.2020.3045784.
[10] F. Kong, J. Li, B. Jiang, H. Wang, and H. Song, “Integrated Generative Model for Industrial Anomaly Detection via Bi-directional LSTM and Attention Mechanism,” IEEE Trans. Ind. Informatics, 2021, doi: 10.1109/TII.2021.3078192.
[11] D. Powell, M. C. Magnanini, M. Colledani, and O. Myklebust, “Advancing zero defect manufacturing: A state-of-the-art perspective and future research directions,” Comput. Ind., vol. 136, pp. 1–11, 2022, doi: 10.1016/j.compind.2021.103596.
[12] Z. Lv, J. Guo, and H. Lv, “Safety Poka Yoke in Zero-Defect Manufacturing Based on Digital Twins,” IEEE Electron Device Lettres, vol. 38, no. 5, pp. 2–10, 2017, doi: 10.1109/TII.2021.3139897.
[13] F. T. Cheng, C. Y. Lee, M. H. Hung, L. Monch, J. R. Morrison, and K. Liu, “Special Issue on Automation Analytics Beyond Industry 4.0: From Hybrid Strategy to Zero-Defect Manufacturing,” IEEE Trans. Autom. Sci. Eng., vol. 19, no. 3, pp. 1472–1476, 2022, doi: 10.1109/TASE.2022.3180525.
[14] M. Dema, C. Turner, H. Sari-Sarraf, and E. Hequet, “Machine Vision System for Characterizing Horizontal Wicking and Drying Using an Infrared Camera,” IEEE Trans. Ind. Informatics, vol. 12, no. 2, pp. 493–502, 2016, doi: 10.1109/TII.2016.2516441.
[15] R. Furferi, L. Governi, and Y. Volpe, “Modelling and simulation of an innovative fabric coating process using artificial neural networks,” Text. Res. J., vol. 82, no. 12, pp. 1282–1294, 2012, doi: 10.1177/0040517512436828.
[16] S. Dong, M. Liu, and S. Zhang, “Association Rule Mining of Silk Relics Database with the RCFP-growth Algorithm,” in Proceedings of the 38th Chinese Control Conference, 2019, pp. 7804–7809.
[17] A. Mukhopadhyay, V. K. Midha, and N. C. Ray, “Multi-objective optimization of parametric combination of injected slub yarn for producing knitted and woven fabrics with least abrasive damage,” Res. J. Text. Appar., vol. 21, no. 2, pp. 111–133, 2017, doi: 10.1108/RJTA-10-2016-0024.
[18] J.-Y. Drean and M. Decrette, “Weaving Preparation,” in Advanced Weaving Technology, Y. Kyosev and F. Boussu, Eds. France: Springer Nature Switzerland, 2022, pp. 3–80.
[19] A. Djuraev, S. Madrakhimov, and M. Erkinov, “Development of the design and justification of the parameters of the guide rapier of the weaving machine,” in Journal of Physics: Conference Series, 2021, vol. 2094, pp. 1–6, doi: 10.1088/1742-6596/2094/4/042029.
[20] Y. Zhang, S. Li, X. Qian, and J. Wang, “A fuzzy neural network based on non-euclidean distance clustering for quality index model in slashing process,” Math. Probl. Eng., vol. 2015, pp. 1–9, 2015, doi: 10.1155/2015/513039.
[21] S. V. Nejat, S. A. Darestani, M. Omidvari, and M. A. Adibi, “Evaluation of green lean production in textile industry: a hybrid fuzzy decision-making framework,” Environ. Sci. Pollut. Res., vol. 29, no. 8, pp. 11590–11611, 2022, doi: 10.1007/s11356-021-16211-4.
[22] Y. Li, J. Ai, and C. Sun, “Online fabric defect inspection using smart visual sensors,” Sensors (Switzerland), vol. 13, no. 4, pp. 4659–4673, 2013, doi: 10.3390/s130404659.
[23] X. Long, B. Fang, Y. Zhang, G. Y. Luo, and F. Sun, “Fabric defect detection using tactile information,” in IEEE International Conference on Robotics and Automation (ICRA 2021), 2021, vol. 2021, no. May, pp. 11169–11174, doi: 10.1109/ICRA48506.2021.9561092.
[24] A. Fallah, E. Jabbari, and R. Babaee, “Development of the Kansa method for solving seepage problems using a new algorithm for the shape parameter optimization,” Comput. Math. with Appl., vol. 77, no. 3, pp. 815–829, 2019, doi: 10.1016/j.camwa.2018.10.021.
[25] W. Wei, D. Deng, L. Zeng, and C. Zhang, “Real-time implementation of fabric defect detection based on variational automatic encoder with structure similarity,” J. Real-Time Image Process., vol. 18, no. 3, pp. 807–823, 2020, doi: 10.1007/s11554-020-01023-5.
[26] B. Wei, K. Hao, X. S. Tang, and L. Ren, “Fabric defect detection based on faster RCNN,” in Advances in Intelligent Systems and Computing, vol. 849, Springer International Publishing, 2019, pp. 45–51.
[27] S. Dlamini, C.-Y. Kao, S.-L. Su, and C.-F. J. Kuo, “Development of a real-time machine vision system for functional textile fabric defect detection using a deep YOLOv4 model,” Text. Res. J., vol. 92, no. 5–6, pp. 675–690, 2022, doi: 10.1177/00405175211034241.
[28] S. E. G. Jeguirim, M. Sahnoun, A. B. Dhouib, M. Cheickrouhou, L. Schacher, and D. Adolphe, “Predicting compression and surfaces properties of knits using fuzzy logic and neural networks techniques,” Int. J. Cloth. Sci. Technol., vol. 23, no. 5, pp. 294–309, 2011, doi: 10.1108/09556221111166239.
[29] G. Yao, J. Guo, and Y. Zhou, “Predicting the Warp Breakage Rate in Weaving by Neural Network Techniques,” Text. Res. J., vol. 75, no. 3, pp. 274–278, 2005, doi: 10.1177/004051750507500314.
[30] E. S. Namlıgöz, S. Çoban, and P. G. Ünal, “Prediction of various functional finishing treatments using artificial neural networks,” Fibers Polym., vol. 12, no. 3, pp. 414–421, 2011, doi: 10.1007/s12221-011-0414-8.
[31] I. Hossain, I. A. Choudhury, A. Bin Mamat, and A. Hossain, “Predicting the color properties of viscose knitted fabrics using soft computing approaches,” J. Text. Inst., vol. 108, no. 10, pp. 1689–1699, 2017, doi: 10.1080/00405000.2017.1279004.
[32] Z. A. Malik, M. H. Malik, T. Hussain, and A. Tanwari, “Predicting strength transfer efficiency of warp and weft yarns in woven fabrics using adaptive neuro-fuzzy inference system,” Indian J. Fibre Text. Res., vol. 35, no. 4, pp. 310–316, 2010.
[33] T. Hussain, A. Jabbar, and S. Ahmed, “Comparison of regression and adaptive neuro-fuzzy models for predicting the compressed air consumption in air-jet weaving,” Fibers Polym., vol. 15, no. 2, pp. 390–395, 2014, doi: 10.1007/s12221-014-0390-x.
[34] S. A. Malik et al., “Analysis and prediction of air permeability of woven barrier fabrics with respect to material, fabric construction, and process parameters,” Fibers Polym., vol. 18, no. 10, pp. 2005–2017, 2017, doi: 10.1007/s12221-017-7241-5.
[35] G. J. Vachtsevanos, J. L. Dorrity, A. Kumar, and S. Kim, “Advanced Application Of Statistical And Fuzzy Control To Textile Processes,” IEEE Trans. Ind. Appl., vol. 30, no. 3, pp. 510–516, 1994, doi: 10.1109/28.293693.
[36] I. Hossain et al., “Color fastness modeling of viscose dyed fabrics using fuzzy expert system,” in 10th International Conference on Mechanical Engineering, ICME, 2013, no. 2014, pp. 1–6.
[37] I. Hossain, A. Hossain, and I. A. Choudhury, “Color strength modeling of viscose/Lycra blended fabrics using a fuzzy logic approach,” J. Eng. Fiber. Fabr., vol. 10, no. 1, pp. 158–168, 2015, doi: 10.1177/155892501501000117.
[38] M. Sentilkumar and N. Selvakumar, “Achieving expected depth of shade in reactive dye application using artificial neural network technique,” Dye. Pigment., vol. 68, no. 2–3, pp. 89–94, 2006, doi: 10.1016/j.dyepig.2004.12.016.
[39] C. F. J. Kuo and C. C. Fang, “Optimization of the processing conditions and prediction of the quality for dyeing nylon and lycra blended fabrics,” Fibers Polym., vol. 7, no. 4, pp. 344–351, 2006, doi: 10.1007/BF02875765.
[40] A. A. Almetwally, “Multi-objective Optimization of Woven Fabric Parameters Using Taguchi–Grey Relational Analysis,” J. Nat. Fibers, vol. 17, no. 10, pp. 1468–1478, 2020, doi: 10.1080/15440478.2019.1579156.
[41] J. L. Dorrity and G. Vachtsevanos, “On-line defect detection for weaving systems,” in IEEE Textile, Fiber and Film Industry Conference, Atlanta 1996, 1996, pp. 1–6, doi: 10.1109/texcon.1996.506352.
[42] M. C. Kayacan, M. Dayik, O. Colak, and M. Kodaloglu, “Velocity control of weft insertion on air jet looms by fuzzy logic,” Fibres Text. East. Eur., vol. 12, no. 3, pp. 29–33, 2004.
[43] S. Kim and G. J. Vachtsevanos, “An intelligent approach to integration and control of textile processes,” Inf. Sci. (Ny)., vol. 123, no. 3, pp. 181–199, 2000, doi: 10.1016/S0020-0255(99)00130-9.
[44] R. A. Jelil, X. Zeng, L. Koehl, and A. Perwuelz, “Modeling plasma surface modification of textile fabrics using artificial neural networks,” Eng. Appl. Artif. Intell., vol. 26, no. 8, pp. 1854–1864, 2013, doi: 10.1016/j.engappai.2013.03.015.
[45] T. Lin, O. A. Zargar, A. M. Mallillin, S. C. Hu, and G. Leggett, “Parametric Optimization for Moisture Infiltration Prevention into a FOUP (Front Opening Unified Pod),” IEEE Trans. Semicond. Manuf., vol. 35, no. 1, pp. 118–127, 2022, doi: 10.1109/TSM.2021.3137798.
[46] G. Cavone, A. Bozza, R. Carli, and M. Dotoli, “MPC-Based Process Control of Deep Drawing: An Industry 4.0 Case Study in Automotive,” IEEE Trans. Autom. Sci. Eng., vol. 19, no. 3, pp. 1586–1598, 2022, doi: 10.1109/TASE.2022.3177362.
[47] B. Caiazzo, M. Di Nardo, T. Murino, A. Petrillo, G. Piccirillo, and S. Santini, “Towards Zero Defect Manufacturing paradigm: A review of the state-of-the-art methods and open challenges,” Comput. Ind., vol. 134, p. 103548, 2022, doi: 10.1016/j.compind.2021.103548.
[48] P. Li, P. Jiang, and W. Guo, “Modeling of Machining Errors’ Accumulation Driven by RFID Graphical Deduction Computing in Multistage Machining Processes,” IEEE Trans. Ind. Informatics, vol. 17, no. 6, pp. 3971–3981, 2021, doi: 10.1109/TII.2020.3014950.
[49] Z. He, K. P. Tran, S. Thomassey, X. Zeng, J. Xu, and C. Yi, “Multi-objective optimization of the textile manufacturing process using deep-Q-network based multi-agent reinforcement learning,” J. Manuf. Syst., vol. 62, no. January 2022, pp. 939–949, 2022, doi: 10.1016/j.jmsy.2021.03.017.
[50] S. Du, R. Xu, and L. Li, “Modeling and Analysis of Multiproduct Multistage Manufacturing System for Quality Improvement,” IEEE Trans. Syst. Man, Cybern. Syst., vol. 48, no. 5, pp. 801–820, 2018, doi: 10.1109/TSMC.2016.2614766.
[51] Z. He, J. Xu, K. P. Tran, S. Thomassey, X. Zeng, and C. Yi, “Modeling of textile manufacturing processes using intelligent techniques: a review,” Int. J. Adv. Manuf. Technol., vol. 116, no. 1–2, pp. 39–67, 2021, doi: 10.1007/s00170-021-07444-1.
[52] S. Zhou, Q. Huang, and J. Shi, “State space modeling of dimensional variation propagation in multistage machining process using differential motion vectors,” IEEE Trans. Robot. Autom., vol. 19, no. 2, pp. 296–309, 2003, doi: 10.1109/TRA.2003.808852.
[53] P. P. Phyo and C. Jeenanunta, “Daily Load Forecasting Based on a Combination of Classification and Regression Tree and Deep Belief Network,” IEEE Access, vol. 9, pp. 152226–152242, 2021, doi: 10.1109/ACCESS.2021.3127211.
[54] J. M. Hawes, “Triple Layer Papermaking Fabric Including Top and Bottom Weft Yarns Interwoven With a Warp Yarn System,” 5,454,405, 1995.
[55] B. C. Goswami, R. D. Anandjiwala, and D. Hall, Textile Sizing. 2004.
[56] Q. Huang, D. Tao, X. Li, L. Jin, and G. Wei, “Exploiting Local Coherent Patterns for Unsupervised Feature Ranking,” IEEE Trans. Syst. Man. Cybern., vol. 41, no. 6, pp. 1471–1482, 2011.
[57] W. Jiang, G. Liu, X. Zhao, and F. Yang, “Cross-Subject Emotion Recognition with a Decision Tree Classifier Based on Sequential Backward Selection,” in 11th International Conference on Intelligent Human-Machine Systems and Cybernetics, IHMSC, 2019, vol. 1, pp. 309–313, doi: 10.1109/IHMSC.2019.00078.
[58] J. Bemister-Buffington, A. J. Wolf, S. Raschka, and L. A. Kuhn, “Machine learning to identify flexibility signatures of class a GPCR inhibition,” Biomolecules, vol. 10, no. 3, pp. 1–22, 2020, doi: 10.3390/biom10030454.
[59] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification And Regression Trees (1st ed.). 1984.
[60] D. H. Lee, S. H. Kim, E. S. Kim, K. J. Kim, and Z. He, “MR-CART: Multiresponse optimization using a classification and regression tree method,” Qual. Eng., vol. 33, no. 3, pp. 457–473, 2021, doi: 10.1080/08982112.2021.1888120.
[61] D. Steinberg, “CART: Classification and Regression Trees,” in The Top Ten Algorithms in Data Mining, vol. 1, X. Wu and V. Kumar, Eds. New York: CRC Press - Taylor & Francis Group, 2009, pp. 179–201.
[62] K. Y. Fung, C. K. Kwong, K. W. M. Siu, and K. M. Yu, “A multi-objective genetic algorithm approach to rule mining for affective product design,” Expert Syst. Appl., vol. 39, no. 8, pp. 7411–7419, 2012, doi: 10.1016/j.eswa.2012.01.065.
[63] K. Chikaoka and R. Shintani, “Weaving Machine,” J. Text. Mach. Soc. Japan, vol. 23, no. 3, pp. 68–72, 1977, doi: 10.2115/fiber.48.3_P116.
[64] C. K. H. Lee et al., “Using fuzzy-based association rule mining to improve production systems for chemical product development,” Int. J. Product. Qual. Manag., vol. 26, no. 4, pp. 446–468, 2019, doi: 10.1504/IJPQM.2019.099624.
[65] H. Li, J. Sun, and J. Wu, “Predicting business failure using classification and regression tree: An empirical comparison with popular classical statistical methods and top classification mining methods,” Expert Syst. Appl., vol. 37, no. 8, pp. 5895–5904, 2010, doi: 10.1016/j.eswa.2010.02.016.
[66] E. Trillas and A. R. De Soto, “On the Search of Speculations,” New Math. Nat. Comput., vol. 18, no. 01, pp. 9–18, 2022, doi: 10.1142/S1793005722500028.
[67] K. Wang, Y. Yin, S. Du, and L. Xi, “Variation management of key control characteristics in multistage machining processes considering quality-cost equilibrium,” J. Manuf. Syst., vol. 59, pp. 441–452, 2021, doi: https://doi.org/10.1016/j.jmsy.2021.03.013.
[68] W. Ren, D. Ma, and M. Han, “Multivariate Time Series Predictor With Parameter Optimization and Feature Selection Based on Modified Binary Salp Swarm Algorithm,” IEEE Trans. Ind. Informatics, vol. 19, no. 4, pp. 6150–6159, 2023, doi: 10.1109/TII.2022.3198465.
[69] S. Parvandeh, H. W. Yeh, M. P. Paulus, and B. A. McKinney, “Consensus features nested cross-validation,” Bioinformatics, vol. 36, no. 10, pp. 3093–3098, 2020, doi: 10.1093/bioinformatics/btaa046. |