博碩士論文 107621006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:251 、訪客IP:18.116.20.74
姓名 楊承霈(Cheng-Pei Yang)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 使用局地氣候區都市分類評估WRF氣象模式耦合都市冠層模式之模擬特性
(Characteristics evaluation of WRF coupled urban canopy model using local climate zone-based urban classifications)
相關論文
★ 土地利用型態對地表能量收支與海陸風模擬的影響★ 探討邊界層參數化對氣象與空氣污染模擬結果的影響
★ 探討土地利用型態對珠江口沿岸地區氣象模擬的影響:高污染事件日之個案分析★ 探討台灣地區在春季期間經長程傳輸所觀測之一氧化碳濃度與綜觀天氣之關係
★ 探討地表參數對台灣地區氣象模擬的影響★ 探討區域尺度氣候變遷對台灣地區氣象場及汙染物濃度模擬的影響
★ 使用CMAQ-HDDM探討台灣地區臭氧之非線性 反應及估算高臭氧區的來源貢獻量: 2011年個案分析★ 地表水文循環過程與大氣耦合作用對土壤溼度以及氣象模擬的影響
★ 使用VVM探討陸氣交換過程對台灣地區高解析氣象模擬的影響--理想個案模擬★ 使用群集分析分類綜觀尺度天氣型態以探討台灣北部地區午後熱對流系統局部環流結構與系統發展特性
★ 台灣中部山區局部環流結構特性與其對空氣汙染物傳送過程的影響★ 開發適用於大氣邊界層觀測的無人機系統
★ 雲林地區細懸浮微粒的來源解析★ 臺灣中部山區埔里盆地之局部環流與邊界層結構特性
★ 臺灣背風渦旋特性分析及其對空氣污染物傳輸過程影響★ 探討地下水參數化對於臺灣地表水文過程之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,有許多研究透過不同的都市冠層模式與土地利用分類,改善氣象模式對於都市型態的描述,評估都市化對大氣環境的影響。而高解析度或準確的都市資訊(如土地使用、建物型態與分佈)並不容易取得,World Urban Database and Access Portal Tools (WUDAPT)資料庫透過衛星、光達及建物資料收集全球都市相關資訊,使用當地氣候區(Local Climate Zone, LCZ)作為土地利用分類依據,基於不同地表結構特性,提供十七種土地利用類別與參數,供都市冠層模式使用。
  本研究使用Weather Research Forecast(WRF)耦合Building Energy Parameterization (BEP)及Building Energy Model (BEM)模擬臺灣地區氣象特性,探討都市冠層模式特徵與對氣象模擬的影響。此外,將臺灣地區LCZ十種都市分類資料納入都市模式中,並和使用原UCM模式識別的三種都市種類資料之模擬結果進行比較,評估較精細之都市土地利用分類與都市參數的模式表現。
  模擬結果顯示,Base組將都市網格視為均值不透水區域,模擬的溫度與可感熱通量較高;BEP組中,因UCM考慮都市網格中不透水表面和植被覆蓋,相較於Base組造成的可感熱通量模擬較低,夜間都會區所模擬的溫度低於未使用UCM的模擬,模式低估且近地表呈現相對穩定的大氣結構;BEM組因進一步考慮人為熱量排放且其影響在夜間較顯著,進而改善都市地區夜間模擬,夜間地表大氣狀態相對不穩定,其人為熱排放影響主要局限於近地表300至400公尺左右。風速方面,UCM因建物阻力效應及粗糙度的增加,模擬風速較低,能有效的改善未使用UCM模擬中環境風場嚴重高估問題。   
  將LCZ都市分類結果納入BEP中,北部都會區日間以主要密集住宅區、商業區、住商混合與工業區的地方溫度量值較高,夜間緊湊型高層建物因建物密度與建物高度影響,顯示較高的溫度;風速方面,建築物密集程度越高且高度越高的都市分類,模擬風速值較低。高雄都會區的主要溫度較高的區域為工廠區域,而研究中顯示高雄都會區夜間開放型中層建物所模擬的溫度較高,異於北部都會區模擬特性,顯示不同都市區域建物結構對於氣象場模擬的差異。和使用原UCM模式所識別的三種都市種類模擬比較顯示,使用LCZ資料的可感熱通量模擬較低且日間差異較顯著,使得日間溫度模擬差異較顯著,都市占比較低的區域,多與使用LCZ資料所模擬地表溫度較低的區域相吻合,LCZ都市參數設定上的差異,皆為導致使用LCZ資料所模擬地表溫度較低的因素,整體模式使用LCZ都市資料溫度低估量值較大。風速方面,兩組都市土地利用資料對於風場模擬在市中心的差異不大,模擬風速值皆較低。
摘要(英) In recent years, many studies have used different urban canopy models (UCM) and land use classifications to improve the description of urban types in meteorological models. High resolution or accurate urban information such as land use, building types and distribution isn′t easy to acquire. The World Urban Database and Access Portal Tools (WUDAPT) database collects global urban information through satellite, LiDAR and building data, using Local Climate Zone (LCZ) classification based on different surface properties to provide seventeen land use types and their corresponding parameters provided to urban canopy model for application.
To investigate the characteristics of urban canopy models and their effects on meteorological simulations, Weather Research Forecast (WRF) coupled with Building Energy Parameterization (BEP) and Building Energy Model (BEM) was applied to simulate the meteorological characteristics of Taiwan. Besides, to evaluate the refined urban land use classification and urban canopy parameters, ten urban classification data of LCZ in Taiwan were incorporated in the urban model and compared with the simulation of using the three urban types identified in the default UCM.
  The BEP simulation showed lower temperature in urban areas than the simulation w/o UCM during nighttime. Due to consideration of the percentage of pervious regions and existence of urban vegetation for urban grids in UCM, less surface heat fluxes were simulated. The results show tendency to underestimate temperature and produce a relatively stable boundary layer. Further consideration of the anthropogenic heat release in BEM simulation, improved the nighttime simulations. Besides, BEM produce relatively unstable boundary layer and the impact of anthropogenic heat emission mainly limited around 300 to 400 meters near the surface in nighttime. UCMs simulated lower wind speed due to the blocking effect of buildings and the increase in roughness, which effectively improve the overestimation of wind field in the simulation without UCM.
Incorporating the LCZ urban classification results into the BEP model, the main dense residential, commercial and industrial area in northern metropolitan area show higher temperature in daytime. The compact high-rise buildings show higher temperature in nighttime due to its density and height of buildings. The urban classification with higher density and higher height of buildings, the lower wind speed was simulated due to the poor ventilation effect and stronger blocking effect. In Kaohsiung area, it shows higher temperature in industrial areas and higher temperature in open high-rise buildings in nighttime, which is different from north areas. The different regional building structures have important impact on meteorological simulation.
  Compared with the simulation of the three urban types identified by the original UCM model, the sensible heat flux simulation using the LCZ data is lower and more significant in daytime, which makes the difference in daytime simulation more obvious. The area with lower surface temperature simulated by the LCZ data is consistent with the urban fraction differences. Besides, the different urban parameter settings of LCZ are factors causing the lower surface temperature compared with the simulation of the three types. The two different urban land use data show insignificant differences in the simulation of wind field in the city center.
關鍵字(中) ★ 局地氣候區
★ 多層都市冠層模式
關鍵字(英) ★ World Urban Database and Access Portal Tools (WUDAPT)
★ Local Climate Zone (LCZ)
★ Building Energy Parameterization (BEP)
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vi
表目錄 viii
圖目錄 ix
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 1
1-3 研究目的 3
第二章 研究方法 5
2-1 模式介紹 5
2-1-1 氣象模式WRF 5
2-1-2 都市冠層模式(Urban Canopy Model) 6
2-2 Local Climate Zone Classification (LCZ) 7
2-3 觀測資料使用 8
第三章 個案介紹與實驗設計 9
3-1 個案介紹 9
3-2 模式設定 10
3-3 實驗設計 11
第四章 結果與討論 12
4-1 都市冠層模式評估 12
4-1-1 土地利用資料 12
4-1-2 不同都市參數化方案比較 13
4-1-3 模式結果與觀測資料比對 14
4-1-4 都市種類模擬差異 16
4-1-5 垂直大氣結構 17
4-2 都市冠層模式納入LCZ都市分類之模擬結果 17
4-2-1 臺灣地區LCZ資料 18
4-2-2 都市建物型態對於近地面氣象場的影響 19
4-2-3 都市土地利用資料模擬結果比較 21
4-2-4 模式結果與觀測資料比對 23
第五章 結論與未來展望 25
5-1 結論 25
5-2 未來展望 26
參考文獻 28
附表 32
附圖 39
參考文獻 Bechtel, B., Alexander, P. J., Böhner, J., Ching, J., Conrad, O., Feddema, J., . . . Stewart, I., 2015: Mapping local climate zones for a worldwide database of the form and function of cities. ISPRS International Journal of Geo-Information, 4(1), 199-219.
Brousse, O., A. Martilli, M. Foley, G. Mills, and B. Bechtel, 2016: WUDAPT, an efficient land use producing data tool for mesoscale models? Integration of urban LCZ in WRF over Madrid. Urban Climate, 17, 116-134.
Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Monthly weather review, 129, 569-585.
Chen, F., Kusaka, H., Bornstein, R., Ching, J., Grimmond, C., Grossman‐Clarke, S., . . . Miao, S., 2011: The integrated WRF/urban modelling system: development, evaluation, and applications to urban environmental problems. International Journal of Climatology, 31(2), 273-288.
Chen, Y.-C., T.-P. Lin, and W.-Y. Shih, 2017: Modeling the urban thermal environment distributions in Taipei Basin using Local Climate Zone (LCZ). 2017 Joint Urban Remote Sensing Event (JURSE), IEEE, 1-4.
Cheng, F.-Y., Y.-C. Hsu, P.-L. Lin, and T.-H. Lin, 2013: Investigation of the effects of different land use and land cover patterns on mesoscale meteorological simulations in the Taiwan area. Journal of Applied Meteorology Climatology, 52, 570-587.
Gutiérrez, E., J. E. González, A. Martilli, R. Bornstein, and M. Arend, 2015: Simulations of a heat-wave event in New York City using a multilayer urban parameterization. Journal of Applied Meteorology Climatology, 54, 283-301.
He, X., Y. Li, X. Wang, L. Chen, B. Yu, Y. Zhang, and S. Miao, 2019: High-resolution dataset of urban canopy parameters for Beijing and its application to the integrated WRF/Urban modelling system. Journal of Cleaner Production, 208, 373-383.
Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long‐lived greenhouse gases: Calculations with the AER radiative transfer models. Journal of Geophysical Research: Atmospheres, 113.
Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Monthly weather review, 122, 927-945.
Kain, J. S., 2004: The Kain–Fritsch convective parameterization: an update. Journal of applied meteorology, 43, 170-181.
Kikegawa, Y., Y. Genchi, H. Yoshikado, and H. Kondo, 2003: Development of a numerical simulation system toward comprehensive assessments of urban warming countermeasures including their impacts upon the urban buildings′ energy-demands. Applied Energy, 76, 449-466.
Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Boundary-layer meteorology, 101, 329-358.
Lin, C.-Y., F. Chen, J. Huang, W.-C. Chen, Y.-A. Liou, W.-N. Chen, and S.-C. Liu, 2008: Urban heat island effect and its impact on boundary layer development and land–sea circulation over northern Taiwan. Atmospheric Environment, 42, 5635-5649.
Lin, C.-Y., C.-J. Su, H. Kusaka, Y. Akimoto, Y.-F. Sheng, J.-C. Huang, and H.-H. Hsu, 2016: Impact of an improved WRF urban canopy model on diurnal air temperature simulation over northern Taiwan. Atmospheric chemistry and Physics, 16, 1809-1822.
Liu, Y., F. Chen, T. Warner, and J. Basara, 2006: Verification of a mesoscale data-assimilation and forecasting system for the Oklahoma City area during the Joint Urban 2003 field project. Journal of applied meteorology climatology, 45, 912-929.
Martilli, A., A. Clappier, and M. W. Rotach, 2002: An urban surface exchange parameterisation for mesoscale models. Boundary-layer meteorology, 104, 261-304.
Mughal, M. O., X. X. Li, T. Yin, A. Martilli, O. Brousse, M. A. Dissegna, and L. K. Norford, 2019: High‐resolution, multilayer modeling of Singapore′s urban climate incorporating local climate zones. Journal of Geophysical Research: Atmospheres, 124, 7764-7785.
Salamanca, F., and A. Martilli, 2010: A new building energy model coupled with an urban canopy parameterization for urban climate simulations—Part II. Validation with one dimension off-line simulations. Theoretical Applied Climatology, 99, 345-356.
Salamanca, F., A. Krpo, A. Martilli, and A. Clappier, 2010: A new building energy model coupled with an urban canopy parameterization for urban climate simulations—part I. formulation, verification, and sensitivity analysis of the model. Theoretical applied climatology, 99, 331-344.
Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2008: A description of the Advanced Research WRF version 3. NCAR Technical note-475+ STR.
Stewart, I. D., and T. R. Oke, 2012: Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 93, 1879-1900.
Stewart, I. D., T. R. Oke, and E. S. Krayenhoff, 2014: Evaluation of the ‘local climate zone’scheme using temperature observations and model simulations. International journal of climatology, 34, 1062-1080.
Tewari, M., F. Chen, H. Kusaka, and S. Miao, 2007: Coupled WRF/Unified Noah/urban-canopy modeling system. NCAR, Boulder, 1-22.
Tewari, M., Chen, F., Wang, W., Dudhia, J., LeMone, M., Mitchell, K., . . . Cuenca, R., 2004: Implementation and verification of the unified NOAH land surface model in the WRF model. Paper presented at the 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction.
Xu, X., J. E. González, S. Shen, S. Miao, and J. Dou, 2018a: Impacts of urbanization and air pollution on building energy demands—Beijing case study. Applied Energy, 225, 98-109.
Xu, X., F. Chen, S. Shen, S. Miao, M. Barlage, W. Guo, and A. Mahalov, 2018b: Using WRF‐Urban to Assess Summertime Air Conditioning Electric Loads and Their Impacts on Urban Weather in Beijing. Journal of Geophysical Research: Atmospheres, 123, 2475-2490.
王暐晴,(2016). 利用WRF/Urban Canopy Model模擬探討台灣北部都市地區之熱島效應,國立中央大學大氣物理研究所碩士論文
指導教授 鄭芳怡(Fang-Yi Cheng) 審核日期 2021-10-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明