參考文獻 |
Bechtel, B., Alexander, P. J., Böhner, J., Ching, J., Conrad, O., Feddema, J., . . . Stewart, I., 2015: Mapping local climate zones for a worldwide database of the form and function of cities. ISPRS International Journal of Geo-Information, 4(1), 199-219.
Brousse, O., A. Martilli, M. Foley, G. Mills, and B. Bechtel, 2016: WUDAPT, an efficient land use producing data tool for mesoscale models? Integration of urban LCZ in WRF over Madrid. Urban Climate, 17, 116-134.
Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Monthly weather review, 129, 569-585.
Chen, F., Kusaka, H., Bornstein, R., Ching, J., Grimmond, C., Grossman‐Clarke, S., . . . Miao, S., 2011: The integrated WRF/urban modelling system: development, evaluation, and applications to urban environmental problems. International Journal of Climatology, 31(2), 273-288.
Chen, Y.-C., T.-P. Lin, and W.-Y. Shih, 2017: Modeling the urban thermal environment distributions in Taipei Basin using Local Climate Zone (LCZ). 2017 Joint Urban Remote Sensing Event (JURSE), IEEE, 1-4.
Cheng, F.-Y., Y.-C. Hsu, P.-L. Lin, and T.-H. Lin, 2013: Investigation of the effects of different land use and land cover patterns on mesoscale meteorological simulations in the Taiwan area. Journal of Applied Meteorology Climatology, 52, 570-587.
Gutiérrez, E., J. E. González, A. Martilli, R. Bornstein, and M. Arend, 2015: Simulations of a heat-wave event in New York City using a multilayer urban parameterization. Journal of Applied Meteorology Climatology, 54, 283-301.
He, X., Y. Li, X. Wang, L. Chen, B. Yu, Y. Zhang, and S. Miao, 2019: High-resolution dataset of urban canopy parameters for Beijing and its application to the integrated WRF/Urban modelling system. Journal of Cleaner Production, 208, 373-383.
Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long‐lived greenhouse gases: Calculations with the AER radiative transfer models. Journal of Geophysical Research: Atmospheres, 113.
Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Monthly weather review, 122, 927-945.
Kain, J. S., 2004: The Kain–Fritsch convective parameterization: an update. Journal of applied meteorology, 43, 170-181.
Kikegawa, Y., Y. Genchi, H. Yoshikado, and H. Kondo, 2003: Development of a numerical simulation system toward comprehensive assessments of urban warming countermeasures including their impacts upon the urban buildings′ energy-demands. Applied Energy, 76, 449-466.
Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Boundary-layer meteorology, 101, 329-358.
Lin, C.-Y., F. Chen, J. Huang, W.-C. Chen, Y.-A. Liou, W.-N. Chen, and S.-C. Liu, 2008: Urban heat island effect and its impact on boundary layer development and land–sea circulation over northern Taiwan. Atmospheric Environment, 42, 5635-5649.
Lin, C.-Y., C.-J. Su, H. Kusaka, Y. Akimoto, Y.-F. Sheng, J.-C. Huang, and H.-H. Hsu, 2016: Impact of an improved WRF urban canopy model on diurnal air temperature simulation over northern Taiwan. Atmospheric chemistry and Physics, 16, 1809-1822.
Liu, Y., F. Chen, T. Warner, and J. Basara, 2006: Verification of a mesoscale data-assimilation and forecasting system for the Oklahoma City area during the Joint Urban 2003 field project. Journal of applied meteorology climatology, 45, 912-929.
Martilli, A., A. Clappier, and M. W. Rotach, 2002: An urban surface exchange parameterisation for mesoscale models. Boundary-layer meteorology, 104, 261-304.
Mughal, M. O., X. X. Li, T. Yin, A. Martilli, O. Brousse, M. A. Dissegna, and L. K. Norford, 2019: High‐resolution, multilayer modeling of Singapore′s urban climate incorporating local climate zones. Journal of Geophysical Research: Atmospheres, 124, 7764-7785.
Salamanca, F., and A. Martilli, 2010: A new building energy model coupled with an urban canopy parameterization for urban climate simulations—Part II. Validation with one dimension off-line simulations. Theoretical Applied Climatology, 99, 345-356.
Salamanca, F., A. Krpo, A. Martilli, and A. Clappier, 2010: A new building energy model coupled with an urban canopy parameterization for urban climate simulations—part I. formulation, verification, and sensitivity analysis of the model. Theoretical applied climatology, 99, 331-344.
Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2008: A description of the Advanced Research WRF version 3. NCAR Technical note-475+ STR.
Stewart, I. D., and T. R. Oke, 2012: Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 93, 1879-1900.
Stewart, I. D., T. R. Oke, and E. S. Krayenhoff, 2014: Evaluation of the ‘local climate zone’scheme using temperature observations and model simulations. International journal of climatology, 34, 1062-1080.
Tewari, M., F. Chen, H. Kusaka, and S. Miao, 2007: Coupled WRF/Unified Noah/urban-canopy modeling system. NCAR, Boulder, 1-22.
Tewari, M., Chen, F., Wang, W., Dudhia, J., LeMone, M., Mitchell, K., . . . Cuenca, R., 2004: Implementation and verification of the unified NOAH land surface model in the WRF model. Paper presented at the 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction.
Xu, X., J. E. González, S. Shen, S. Miao, and J. Dou, 2018a: Impacts of urbanization and air pollution on building energy demands—Beijing case study. Applied Energy, 225, 98-109.
Xu, X., F. Chen, S. Shen, S. Miao, M. Barlage, W. Guo, and A. Mahalov, 2018b: Using WRF‐Urban to Assess Summertime Air Conditioning Electric Loads and Their Impacts on Urban Weather in Beijing. Journal of Geophysical Research: Atmospheres, 123, 2475-2490.
王暐晴,(2016). 利用WRF/Urban Canopy Model模擬探討台灣北部都市地區之熱島效應,國立中央大學大氣物理研究所碩士論文 |