博碩士論文 107887002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:18.189.188.157
姓名 吳坤霖(Kun-Lin Wu)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱 探索microRNAs作為末期腎病相關合併症之診斷生物標誌物研究。
(The investigation of the microRNAs as the diagnostic biomarkers for the comorbidities in end-stage renal disease patients.)
相關論文
★ 探討牛樟芝CCM111對細胞訊息傳遞之影響★ Tyloxapol 在大腸癌細胞中的特異性及作用機制之研究
★ MAPK傳導路徑相關微型RNA在黑色素瘤細胞中功能之研究★ 利用MAPK訊息傳導路徑相關的miRNAs來治療BRAF抑制劑的抗藥性在黑色素瘤細胞中之研究
★ 探討miR-567在黑色素細胞瘤中的調控機制★ 探索微型核糖核酸與慢性腎臟病及血液透析病人泌尿道上皮癌生物標記的相關性
★ 以miRNA為基礎開發偵測放射線治療抗性及預後的生物標記★ 偵測微型核糖核酸 miR-524-5p表現量利用原位雜交染色法來作為輔助診斷惡性黑色素瘤的生物標記之研究
★ 研究牛樟芝萃取物 CCM111 的作用機制★ 探討黑色素腫瘤中p53調控miR-524-5p及miR-596表現之機制
★ 泌尿道上皮癌相關的miRNAs在膀胱癌之研究★ 探討BRAF抑制劑透過細胞間訊息誘導腫瘤形成之研究
★ 微型核糖核酸成為放射線治療的預後生物標記之研究★ 發展以血中微型 RNA 作為冠心症(CAD)的非侵入性疾病指標
★ microRNAs作為放射治療預後之生物標誌物與miR-148a-3p於頭頸癌放射敏感度之研究★ 研究miR-524-5p和miR-567治療在黑色素瘤與BRAF抑製劑的抗藥性黑色素瘤
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-6-30以後開放)
摘要(中) 慢性腎臟病是一世界性的健康問題,隨著腎功能逐漸下降至末期腎病,電解質不平衡、酸血症、體液過多、貧血及尿毒症等問題隨之發生,需實行腎臟替代療法以維持生命與生活品質。在腎臟替代療法中,腹膜透析為一方便經濟的治療模式,但在長期腹膜透析液或感染等刺激腹膜下,可能會發展致命性的包覆性腹膜硬化症。因此病早期症狀無特異性,故常會延遲診斷導致高的死亡率。另腎臟病也與心血管相關疾患息息相關,而冠狀動脈疾患相關症狀於血液透析族群中較為隱晦不明,非侵入性檢查其準確率亦有偏低的現象,致未能早期即時診斷治療。
腎臟替代療法雖然可維持末期腎病患者生命,但是相關併發症的困難診斷仍讓病人置身於不可挽救的狀況中。微型RNA參與在重要的基因轉錄調控中,其常被包裹於胞外小體、泌外體或其他結構中,可以穩定存在於體液中扮演著訊息傳遞的角色,且有文獻報導可以應用微型RNA於疾病偵測以期能早期準確診斷。
在此研究中,透過系統性的方法發現腹膜透析液及血液中的微型RNA分別在包覆性腹膜硬化症及冠心症發生時會產生有意義的改變。以包覆性腹膜硬化症來說,篩選出有變化的微型RNA,結合臨床表現,透過統計及機器學習模式發展預測模型,可有效的將診斷準確率提高。再進一步利用資料庫分析,發現這些特定的微型RNA與分子訊息調控相關,亦與特定藥物有關聯,上述發現指向微型RNA本身及相關藥物可能具有治療的濳力。另一方面,冠狀動脈疾患在血液透析病人常因不易診斷導致猝死,我們利用微型RNA在血液中表現量的變化,結合異常生化值,發展出較目前非侵入性診斷更為準確的冠狀動脈疾患預測模型,同時透過資料庫發現其與冠狀動脈疾病發生的因子及機轉相關。未來將透過進一步實驗了解微型RNA在包覆性腹膜硬化症及冠狀動脈疾患扮演了何種重要角色,參與疾病形成機轉及在治療方面的潜力。
摘要(英) Chronic kidney disease (CKD) is a global health concern. As renal function gradually declines to end-stage renal disease (ESRD), issues such as electrolyte imbalance, acidosis, fluid overload, anemia, and uremia develop, necessitating renal replacement therapy to sustain life and maintain life quality. Peritoneal dialysis (PD) is an economically convenient renal replacement therapy. However, prolonged exposure to PD fluid or infections may lead to the encapsulating peritoneal sclerosis (EPS). Early symptoms of this disease are uncertain, often resulting in delayed diagnosis with high mortality rates.
Additionally, the renal failure is closely associated with cardiovascular disease. Symptoms related to coronary artery disease in the hemodialysis (HD) population may be subtle, and the accuracy of non-invasive diagnostic tools is often limited, leading to delayed diagnoses and treatment.
While renal replacement therapy can sustain the lives in end-stage renal disease patients, the challenging diagnosis of complications places patients at an irretrievable high risk of mortality. MicroRNA (miRNA) plays a crucial role in regulating gene transcription. Encased in extracellular vesicles, exosomes, or other structures in circulation, miRNAs stably exist in biofluids, serving as messengers. Literatures report that the miRNAs can be applied as biomarkers for disease detection.
In this study, a systematic approach revealed significant changes in miRNA expressions in PD effluent and blood of EPS and CAD, respectively. For EPS, altered miRNAs were identified, and, when combined with clinical manifestations, a predictive model was developed using statistical and machine learning models to improve diagnostic accuracy. Further database analysis indicated that these candidate miRNAs are associated with molecular message pathway and linked to specific drugs, suggesting therapeutic potential for both microRNA itself and related drugs.
On the other hand, CAD in HD patients often leads to sudden death due to the difficulty in diagnosis. By utilizing variations in miRNA expression in blood, coupled with abnormal biochemical values, a more accurate predictive model for CAD was developed compared to current non-invasive diagnostics. Database findings revealed these miRNAs involved pathophysiology. Future experiments will explore the critical roles that miRNAs play in EPS and CAD, elucidating the mechanisms of disease and the therapeutic potential.
關鍵字(中) ★ 微型RNA
★ 末期腎病
★ 腹膜透析
★ 血液透析
★ 包覆性腹膜硬化症
★ 冠狀動脈疾患
關鍵字(英) ★ microRNA
★ end-stage renal disease
★ peritoneal dialysis
★ hemodialysis
★ encapsulating peritoneal sclerosis
論文目次 目錄
中文摘要 I
ABSTRACT III
ACKNOWLEDGEMENT V
LIST OF FIGURES XI
LIST OF TABLES XIII
LIST OF ABBREVIATIONS XIV
CHAPTER 1: LITERATURE REVIEW 1
1.1. INTRODUCTION TO CHRONIC KIDNEY DISEASE 1
1.1.1 Renal function 1
1.1.2 Chronic kidney disease 7
1.1.3 Renal replacement therapy 9
1.2 INTRODUCTION TO ENCAPSULATING PERITONEAL SCLEROSIS. 11
1.2.1 Signs and symptoms of encapsulating peritoneal sclerosis 12
1.2.2 Diagnosis for encapsulating peritoneal sclerosis. 13
1.2.3 The treatment of encapsulating peritoneal sclerosis 15
1.3 INTRODUCTION TO CORONARY ARTERY DISEASE IN HEMODIALYSIS PATIENTS 16
1.3.1 Signs and symptoms of coronary artery disease 16
1.3.2 Coronary artery disease in hemodialysis patients 18
1.3.3 The diagnosis for coronary artery disease 19
1.4 INTRODUCTION TO MICRORNA 20
1.4.1 Biomarkers for diseases 20
1.4.2 Biogenesis and mechanism of microRNA 21
1.4.3 microRNA dysregulation in disease 22
1.5 SIGNIFICANCES AND PURPOSE 23
CHAPTER 2. MATERIALS AND METHODS 32
2.1 PATIENT RECRUITMENTS WITH ETHICS APPROVAL AND INFORMED CONSENT 32
2.2 PREPARATION OF PD EFFLUENT AND PLASMA AND MIRNA ISOLATION AND QUANTIFICATION BY RT-PCR 33
2.3 HIGH-THROUGHPUT AND SINGLE REAL-TIME QUANTITATIVE REVERSE TRANSCRIPTASE POLYMERASE CHAIN REACTION ANALYSIS 35
2.4 NEXT GENERATION SEQUENCE OF MIRNAS 36
2.5 MULTIPLE LOGISTIC REGRESSION AND MACHINE LEARNING MODEL 37
2.6 THE CONSTRUCTION OF MIRNA-GENE INTERACTION NETWORK AND PATHWAY ENRICHMENT ANALYSIS 38
2.7 THE CONSTRUCTION OF MIRNA-COMPOUND INTERACTION NETWORK 38
2.8 STATISTICAL ANALYSIS 39
CHAPTER 3. THE MIRNA CANDIDATE AS DIAGNOSTIC TOOL FOR ENCAPSULATING PERITONEAL SCLEROSIS IN PERITONEAL DIALYSIS PATIENTS. 40
3.1 INTRODUCTION 40
3.2 RESULTS 42
3.2.3 Identification of candidate miRNAs in effluent between EPS and non-EPS 42
3.2.4 The predication model to identify EPS in PD patients. 44
3.2.5 The targeting genes of EPS associated miRNAs and the pathways. 46
3.2.6 The interactions of EPS associated miRNAs and drug compounds. 47
3.3 DISCUSSION 48
CHAPTER 4. CANDIDATE MIRNAS AS DETECTORS FOR CORONARY ARTERY DISEASE IN HEMODIALYSIS PATIENTS 70
4.1 INTRODUCTION 70
4.2 RESULTS 71
4.2.1 The clinical characteristics in hemodialysis patients with coronary artery. 71
4.2.2 Identification of candidate miRNAs of plasma in hemodialysis patients with coronary artery. 72
4.2.3 The miRNA based predication model of coronary artery disease in hemodialysis patients. 73
4.2.5 The interactions of CAD associated miRNAs and drug compounds. 75
4.3 DISCUSSION 76
CHAPTER 5. CONCLUDING REMARKS AND FUTURE DIRECTION 94
5.1 CONCLUSION REMARKS 94
5.2 FUTURE DIRECTION 97
5.2.1 To boost ability of prediction model for more accuracy and early detection. 97
5.2.2 To investigate the interplay of miRNAs and pathophysiology of EPS. 97
5.2.3 To investigate the interaction between miRNAs and vascular disease in HD population. 99
101
REFERENCES 105
APPENDIX A. PUBLICATION LIST. 117
參考文獻 [1] Knepper MA, Kwon TH, Nielsen S: Molecular physiology of water balance. N Engl J Med 2015, 372:1349-58.
[2] Kamel S. Kamel MLH: Interpretation of Electrolyte and Acid-Base Parameters in Blood and Urine. Brenner and Rector′s the Kidneyeleven ed: Elsevier, 2020. pp. 758-95. e2.
[3] Volker Vallon SB, Sanjay K. Nigam: Renal Handling of Organic Solutes. Brenner and Rector′s The KidneyEleventh ed: Elsevier, 2020. pp. 218-46.e9.
[4] Robert T. Mallet RM: The Endocrine Kidney: Local and Systemic Actions of Renal Hormones. Hormonal Signaling in Biology and Medicine. Edited by Litwack G. 2020. pp. 445-60.
[5] US Department of Health and Human Services CfDCaP: Chronic Kidney Disease in the United States, 2023. Centers for Disease Control and Prevention 2023.
[6] Tsai MH, Hsu CY, Lin MY, Yen MF, Chen HH, Chiu YH, Hwang SJ: Incidence, Prevalence, and Duration of Chronic Kidney Disease in Taiwan: Results from a Community-Based Screening Program of 106,094 Individuals. Nephron 2018, 140:175-84.
[7] Lai TS, Hsu CC, Lin MH, Wu VC, Chen YM: Trends in the incidence and prevalence of end-stage kidney disease requiring dialysis in Taiwan: 2010-2018. J Formos Med Assoc 2022, 121 Suppl 1:S5-S11.
[8] Collaboration GBDCKD: Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395:709-33.
[9] Pecoits-Filho R, Okpechi IG, Donner JA, Harris DCH, Aljubori HM, Bello AK, Bellorin-Font E, Caskey FJ, Collins A, Cueto-Manzano AM, Feehally J, Goh BL, Jager KJ, Nangaku M, Rahman M, Sahay M, Saleh A, Sola L, Turan Kazancioglu R, Walker RC, Walker R, Yao Q, Yu X, Zhao MH, Johnson DW: Capturing and monitoring global differences in untreated and treated end-stage kidney disease, kidney replacement therapy modality, and outcomes. Kidney Int Suppl (2011) 2020, 10:e3-e9.
[10] Liyanage T, Ninomiya T, Jha V, Neal B, Patrice HM, Okpechi I, Zhao MH, Lv J, Garg AX, Knight J, Rodgers A, Gallagher M, Kotwal S, Cass A, Perkovic V: Worldwide access to treatment for end-stage kidney disease: a systematic review. Lancet 2015, 385:1975-82.
[11] Li PK, Chow KM, Van de Luijtgaarden MW, Johnson DW, Jager KJ, Mehrotra R, Naicker S, Pecoits-Filho R, Yu XQ, Lameire N: Changes in the worldwide epidemiology of peritoneal dialysis. Nat Rev Nephrol 2017, 13:90-103.
[12] Wolfe RA, Ashby VB, Milford EL, Ojo AO, Ettenger RE, Agodoa LY, Held PJ, Port FK: Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N Engl J Med 1999, 341:1725-30.
[13] Tonelli M, Wiebe N, Knoll G, Bello A, Browne S, Jadhav D, Klarenbach S, Gill J: Systematic review: kidney transplantation compared with dialysis in clinically relevant outcomes. Am J Transplant 2011, 11:2093-109.
[14] Chen CF, Chen FA, Lee TL, Liao LF, Chen CY, Tan AC, Chan CH, Lin CC: Current status of dialysis and vascular access in Taiwan. J Vasc Access 2019, 20:368-73.
[15] Brown EA, Bargman J, van Biesen W, Chang MY, Finkelstein FO, Hurst H, Johnson DW, Kawanishi H, Lambie M, de Moraes TP, Morelle J, Woodrow G: Length of Time on Peritoneal Dialysis and Encapsulating Peritoneal Sclerosis - Position Paper for ISPD: 2017 Update. Perit Dial Int 2017, 37:362-74.
[16] Kawanishi H, Kawaguchi Y, Fukui H, Hara S, Imada A, Kubo H, Kin M, Nakamoto M, Ohira S, Shoji T: Encapsulating peritoneal sclerosis in Japan: a prospective, controlled, multicenter study. Am J Kidney Dis 2004, 44:729-37.
[17] Brown MC, Simpson K, Kerssens JJ, Mactier RA, Scottish Renal R: Encapsulating peritoneal sclerosis in the new millennium: a national cohort study. Clin J Am Soc Nephrol 2009, 4:1222-9.
[18] Augustine T, Brown PW, Davies SD, Summers AM, Wilkie ME: Encapsulating peritoneal sclerosis: clinical significance and implications. Nephron Clin Pract 2009, 111:c149-54; discussion c54.
[19] Korte MR, Sampimon DE, Betjes MG, Krediet RT: Encapsulating peritoneal sclerosis: the state of affairs. Nat Rev Nephrol 2011, 7:528-38.
[20] Zeier M, Schwenger V, Deppisch R, Haug U, Weigel K, Bahner U, Wanner C, Schneider H, Henle T, Ritz E: Glucose degradation products in PD fluids: do they disappear from the peritoneal cavity and enter the systemic circulation? Kidney Int 2003, 63:298-305.
[21] Tauer A, Zhang X, Schaub TP, Zimmeck T, Niwa T, Passlick-Deetjen J, Pischetsrieder M: Formation of advanced glycation end products during CAPD. Am J Kidney Dis 2003, 41:S57-60.
[22] Nakamura S, Niwa T: Advanced glycation end-products and peritoneal sclerosis. Semin Nephrol 2004, 24:502-5.
[23] Honda K, Nitta K, Horita S, Yumura W, Nihei H, Nagai R, Ikeda K, Horiuchi S: Accumulation of advanced glycation end products in the peritoneal vasculature of continuous ambulatory peritoneal dialysis patients with low ultra-filtration. Nephrol Dial Transplant 1999, 14:1541-9.
[24] Singhal M, Krishna S, Lal A, Narayanasamy S, Bal A, Yadav TD, Kochhar R, Sinha SK, Khandelwal N, Sheikh AM: Encapsulating Peritoneal Sclerosis: The Abdominal Cocoon. Radiographics 2019, 39:62-77.
[25] Chou CY, Tseng CC, Chen JB, Hung CC, Huang CC: A Matrix Metalloproteinase-2-Based Nomogram to Assess the Risk of Encapsulating Peritoneal Sclerosis in Peritoneal Dialysis Patients. Biomed Res Int 2021, 2021:6666441.
[26] Lopes Barreto D, Struijk DG, Krediet RT: Peritoneal effluent MMP-2 and PAI-1 in encapsulating peritoneal sclerosis. Am J Kidney Dis 2015, 65:748-53.
[27] Sampimon DE, Korte MR, Barreto DL, Vlijm A, de Waart R, Struijk DG, Krediet RT: Early diagnostic markers for encapsulating peritoneal sclerosis: a case-control study. Perit Dial Int 2010, 30:163-9.
[28] Habib SM, Korte MR, Betjes MG: Lower mortality and inflammation from post-transplantation encapsulating peritoneal sclerosis compared to the classical form. Am J Nephrol 2013, 37:223-30.
[29] Tseng CC, Chen JB, Wang IK, Liao SC, Cheng BC, Wu AB, Chang YT, Hung SY, Huang CC: Incidence and outcomes of encapsulating peritoneal sclerosis (EPS) and factors associated with severe EPS. PLoS One 2018, 13:e0190079.
[30] El-Sherbini N, Duncan N, Hickson M, Johansson L, Brown EA: Nutrition changes in conservatively treated patients with encapsulating peritoneal sclerosis. Perit Dial Int 2013, 33:538-43.
[31] Kuriyama S, Tomonari H: Corticosteroid therapy in encapsulating peritoneal sclerosis. Nephrol Dial Transplant 2001, 16:1304-5.
[32] Danford CJ, Lin SC, Smith MP, Wolf JL: Encapsulating peritoneal sclerosis. World J Gastroenterol 2018, 24:3101-11.
[33] Korte MR, Fieren MW, Sampimon DE, Lingsma HF, Weimar W, Betjes MG, investigators of the Dutch Multicentre EPSS: Tamoxifen is associated with lower mortality of encapsulating peritoneal sclerosis: results of the Dutch Multicentre EPS Study. Nephrol Dial Transplant 2011, 26:691-7.
[34] Summers AM, Clancy MJ, Syed F, Harwood N, Brenchley PE, Augustine T, Riad H, Hutchison AJ, Taylor P, Pearson R, Gokal R: Single-center experience of encapsulating peritoneal sclerosis in patients on peritoneal dialysis for end-stage renal failure. Kidney Int 2005, 68:2381-8.
[35] Loureiro J, Aguilera A, Selgas R, Sandoval P, Albar-Vizcaino P, Perez-Lozano ML, Ruiz-Carpio V, Majano PL, Lamas S, Rodriguez-Pascual F, Borras-Cuesta F, Dotor J, Lopez-Cabrera M: Blocking TGF-beta1 protects the peritoneal membrane from dialysate-induced damage. J Am Soc Nephrol 2011, 22:1682-95.
[36] Kawanishi H, Shintaku S, Moriishi M, Dohi K, Tsuchiya S: Seventeen years′ experience of surgical options for encapsulating peritoneal sclerosis. Adv Perit Dial 2011, 27:53-8.
[37] Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY: Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 2004, 351:1296-305.
[38] Sarnak MJ, Amann K, Bangalore S, Cavalcante JL, Charytan DM, Craig JC, Gill JS, Hlatky MA, Jardine AG, Landmesser U, Newby LK, Herzog CA, Cheung M, Wheeler DC, Winkelmayer WC, Marwick TH, Conference P: Chronic Kidney Disease and Coronary Artery Disease: JACC State-of-the-Art Review. J Am Coll Cardiol 2019, 74:1823-38.
[39] Aoki J, Ikari Y: Cardiovascular Disease in Patients with End-Stage Renal Disease on Hemodialysis. Ann Vasc Dis 2017, 10:327-37.
[40] Bansal N: Evolution of Cardiovascular Disease During the Transition to End-Stage Renal Disease. Semin Nephrol 2017, 37:120-31.
[41] De Lima JJ, Gowdak LH, de Paula FJ: Diagnosis and treatment of coronary artery disease in hemodialysis patients evaluated for transplant. Transplant Res 2012, 1:3.
[42] Rostand SG, Kirk KA, Rutsky EA: Dialysis-associated ischemic heart disease: insights from coronary angiography. Kidney Int 1984, 25:653-9.
[43] Ohtake T, Kobayashi S, Moriya H, Negishi K, Okamoto K, Maesato K, Saito S: High prevalence of occult coronary artery stenosis in patients with chronic kidney disease at the initiation of renal replacement therapy: an angiographic examination. J Am Soc Nephrol 2005, 16:1141-8.
[44] Herzog CA, Ma JZ, Collins AJ: Poor long-term survival after acute myocardial infarction among patients on long-term dialysis. N Engl J Med 1998, 339:799-805.
[45] Shroff GR, Frederick PD, Herzog CA: Renal failure and acute myocardial infarction: clinical characteristics in patients with advanced chronic kidney disease, on dialysis, and without chronic kidney disease. A collaborative project of the United States Renal Data System/National Institutes of Health and the National Registry of Myocardial Infarction. Am Heart J 2012, 163:399-406.
[46] Wang LW, Fahim MA, Hayen A, Mitchell RL, Lord SW, Baines LA, Craig JC, Webster AC: Cardiac testing for coronary artery disease in potential kidney transplant recipients: a systematic review of test accuracy studies. Am J Kidney Dis 2011, 57:476-87.
[47] Muntner P, He J, Astor BC, Folsom AR, Coresh J: Traditional and nontraditional risk factors predict coronary heart disease in chronic kidney disease: results from the atherosclerosis risk in communities study. J Am Soc Nephrol 2005, 16:529-38.
[48] Stenvinkel P, Carrero JJ, Axelsson J, Lindholm B, Heimburger O, Massy Z: Emerging biomarkers for evaluating cardiovascular risk in the chronic kidney disease patient: how do new pieces fit into the uremic puzzle? Clin J Am Soc Nephrol 2008, 3:505-21.
[49] Jansz TT, van Reekum FE, Ozyilmaz A, de Jong PA, Boereboom FTJ, Hoekstra T, Verhaar MC, van Jaarsveld BC: Coronary Artery Calcification in Hemodialysis and Peritoneal Dialysis. Am J Nephrol 2018, 48:369-77.
[50] Shroff RC, Shanahan CM: The vascular biology of calcification. Semin Dial 2007, 20:103-9.
[51] Batyraliev T, Ayalp MR, Sercelik A, Karben Z, Dinler G, Besnili F, Ozgul S, Perchucov I: Complications of cardiac catheterization: a single-center study. Angiology 2005, 56:75-80.
[52] Chandrasekar B, Doucet S, Bilodeau L, Crepeau J, deGuise P, Gregoire J, Gallo R, Cote G, Bonan R, Joyal M, Gosselin G, Tanguay JF, Dyrda I, Bois M, Pasternac A: Complications of cardiac catheterization in the current era: a single-center experience. Catheter Cardiovasc Interv 2001, 52:289-95.
[53] Wang AY, Lai KN: Use of cardiac biomarkers in end-stage renal disease. J Am Soc Nephrol 2008, 19:1643-52.
[54] Detrano R, Gianrossi R, Mulvihill D, Lehmann K, Dubach P, Colombo A, Froelicher V: Exercise-induced ST segment depression in the diagnosis of multivessel coronary disease: a meta analysis. J Am Coll Cardiol 1989, 14:1501-8.
[55] De Vriese AS, Vandecasteele SJ, Van den Bergh B, De Geeter FW: Should we screen for coronary artery disease in asymptomatic chronic dialysis patients? Kidney Int 2012, 81:143-51.
[56] Wang LW, Fahim MA, Hayen A, Mitchell RL, Baines L, Lord S, Craig JC, Webster AC: Cardiac testing for coronary artery disease in potential kidney transplant recipients. Cochrane Database Syst Rev 2011:CD008691.
[57] Winther S, Svensson M, Jorgensen HS, Bouchelouche K, Gormsen LC, Pedersen BB, Holm NR, Botker HE, Ivarsen P, Bottcher M: Diagnostic Performance of Coronary CT Angiography and Myocardial Perfusion Imaging in Kidney Transplantation Candidates. JACC Cardiovasc Imaging 2015, 8:553-62.
[58] Chen C, Wang J, Pan D, Wang X, Xu Y, Yan J, Wang L, Yang X, Yang M, Liu GP: Applications of multi-omics analysis in human diseases. MedComm (2020) 2023, 4:e315.
[59] Hasin Y, Seldin M, Lusis A: Multi-omics approaches to disease. Genome Biol 2017, 18:83.
[60] Bartel DP: MicroRNAs: Genomics, Biogenesis, Mecahnism, and Function. Cell 2004, 116.
[61] Gurianova V, Stroy D, Ciccocioppo R, Gasparova I, Petrovic D, Soucek M, Dosenko V, Kruzliak P: Stress response factors as hub-regulators of microRNA biogenesis: implication to the diseased heart. Cell Biochem Funct 2015, 33:509-18.
[62] Ardekani AM, Naeini MM: The Role of MicroRNAs in Human Diseases. Avicenna J Med Biotechnol 2010, 2:161-79.
[63] Ullah S, John P, Bhatti A: MicroRNAs with a role in gene regulation and in human diseases. Mol Biol Rep 2014, 41:225-32.
[64] Kasinski AL, Slack FJ: Epigenetics and genetics. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer 2011, 11:849-64.
[65] Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR: MicroRNA expression profiles classify human cancers. Nature 2005, 435:834-8.
[66] Mall C, Rocke DM, Durbin-Johnson B, Weiss RH: Stability of miRNA in human urine supports its biomarker potential. Biomark Med 2013, 7:623-31.
[67] Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O′Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M: Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 2008, 105:10513-8.
[68] Sundarbose K, Kartha RV, Subramanian S: MicroRNAs as Biomarkers in Cancer. Diagnostics (Basel) 2013, 3:84-104.
[69] Negrini M, Nicoloso MS, Calin GA: MicroRNAs and cancer--new paradigms in molecular oncology. Curr Opin Cell Biol 2009, 21:470-9.
[70] Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, Galas DJ, Wang K: The microRNA spectrum in 12 body fluids. Clin Chem 2010, 56:1733-41.
[71] Che M, Shi T, Feng S, Li H, Zhang X, Feng N, Lou W, Dou J, Tang G, Huang C, Xu G, Qian Q, Sun S, He L, Wang H: The MicroRNA-199a/214 Cluster Targets E-Cadherin and Claudin-2 and Promotes High Glucose-Induced Peritoneal Fibrosis. J Am Soc Nephrol 2017, 28:2459-71.
[72] Szeto CC, Chow KM, Kwan BC, Cheng PM, Luk CC, Ng JK, Law MC, Leung CB, Li PK: Peritoneal dialysis effluent miR-21 and miR-589 levels correlate with longitudinal change in peritoneal transport characteristics. Clin Chim Acta 2017, 464:106-12.
[73] Kaur A, Mackin ST, Schlosser K, Wong FL, Elharram M, Delles C, Stewart DJ, Dayan N, Landry T, Pilote L: Systematic review of microRNA biomarkers in acute coronary syndrome and stable coronary artery disease. Cardiovasc Res 2020, 116:1113-24.
[74] Wang LW, Fahim MA, Hayen A, Mitchell RL, Baines L, Lord S, Craig JC, Webster AC: Cardiac testing for coronary artery disease in potential kidney transplant recipients. Cochrane Database Syst Rev 2011, 2011:CD008691.
[75] Di Carli MF, Kwong RY, Solomon SD: Noninvasive Cardiac Imaging: Echocardiography, Nuclear Cardiology, and Magnetic Resonance/Computed Tomography Imaging. Harrison′s Principles of Internal Medicine, 21e. Edited by Loscalzo J, Fauci A, Kasper D, Hauser S, Longo D, Jameson JL. New York, NY: McGraw-Hill Education, 2022.
[76] Tarzi RM, Lim A, Moser S, Ahmad S, George A, Balasubramaniam G, Clutterbuck EJ, Gedroyc W, Brown EA: Assessing the validity of an abdominal CT scoring system in the diagnosis of encapsulating peritoneal sclerosis. Clin J Am Soc Nephrol 2008, 3:1702-10.
[77] Correction to: 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022, 145:e772.
[78] Li AL, Chung TS, Chan YN, Chen CL, Lin SC, Chiang YR, Lin CH, Chen CC, Ma N: microRNA expression pattern as an ancillary prognostic signature for radiotherapy. J Transl Med 2018, 16:341.
[79] Chen CL, Lin CH, Li AL, Huang CC, Shen BY, Chiang YR, Fang PL, Chang HC, Li KL, Yang WC, Horng JT, Ma N: Plasma miRNA profile is a biomarker associated with urothelial carcinoma in chronic hemodialysis patients. Am J Physiol Renal Physiol 2019, 316:F1094-F102.
[80] Chang L, Zhou G, Soufan O, Xia J: miRNet 2.0: network-based visual analytics for miRNA functional analysis and systems biology. Nucleic Acids Res 2020, 48:W244-W51.
[81] Jassal B, Matthews L, Viteri G, Gong C, Lorente P, Fabregat A, Sidiropoulos K, Cook J, Gillespie M, Haw R, Loney F, May B, Milacic M, Rothfels K, Sevilla C, Shamovsky V, Shorser S, Varusai T, Weiser J, Wu G, Stein L, Hermjakob H, D′Eustachio P: The reactome pathway knowledgebase. Nucleic Acids Res 2020, 48:D498-D503.
[82] Kang J, Tang Q, He J, Li L, Yang N, Yu S, Wang M, Zhang Y, Lin J, Cui T, Hu Y, Tan P, Cheng J, Zheng H, Wang D, Su X, Chen W, Huang Y: RNAInter v4.0: RNA interactome repository with redefined confidence scoring system and improved accessibility. Nucleic Acids Res 2022, 50:D326-D32.
[83] Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003, 13:2498-504.
[84] Gebert LFR, MacRae IJ: Regulation of microRNA function in animals. Nat Rev Mol Cell Biol 2019, 20:21-37.
[85] Aroeira LS, Aguilera A, Sanchez-Tomero JA, Bajo MA, del Peso G, Jimenez-Heffernan JA, Selgas R, Lopez-Cabrera M: Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: pathologic significance and potential therapeutic interventions. J Am Soc Nephrol 2007, 18:2004-13.
[86] Li J, Li SX, Gao XH, Zhao LF, Du J, Wang TY, Wang L, Zhang J, Wang HY, Dong R, Guo ZY: HIF1A and VEGF regulate each other by competing endogenous RNA mechanism and involve in the pathogenesis of peritoneal fibrosis. Pathol Res Pract 2019, 215:644-52.
[87] Yu F, Lu Z, Huang K, Wang X, Xu Z, Chen B, Dong P, Zheng J: MicroRNA-17-5p-activated Wnt/beta-catenin pathway contributes to the progression of liver fibrosis. Oncotarget 2016, 7:81-93.
[88] Chen X, Gu L, Cheng X, Xing J, Zhang M: MiR-17-5p downregulation alleviates apoptosis and fibrosis in high glucose-induced human mesangial cells through inactivation of Wnt/beta-catenin signaling by targeting KIF23. Environ Toxicol 2021, 36:1702-12.
[89] Cao RY, Li Q, Miao Y, Zhang Y, Yuan W, Fan L, Liu G, Mi Q, Yang J: The Emerging Role of MicroRNA-155 in Cardiovascular Diseases. Biomed Res Int 2016, 2016:9869208.
[90] Wang D, Liu Z, Yan Z, Liang X, Liu X, Liu Y, Wang P, Bai C, Gu Y, Zhou PK: MiRNA-155-5p inhibits epithelium-to-mesenchymal transition (EMT) by targeting GSK-3beta during radiation-induced pulmonary fibrosis. Arch Biochem Biophys 2021, 697:108699.
[91] Chen Y, Xu D, Yao J, Wei Z, Li S, Gao X, Cai W, Mao N, Jin F, Li Y, Zhu Y, Li S, Liu H, Yang F, Xu H: Inhibition of miR-155-5p Exerts Anti-Fibrotic Effects in Silicotic Mice by Regulating Meprin alpha. Mol Ther Nucleic Acids 2020, 19:350-60.
[92] Zhang W, Li X, Tang Y, Chen C, Jing R, Liu T: miR-155-5p Implicates in the Pathogenesis of Renal Fibrosis via Targeting SOCS1 and SOCS6. Oxid Med Cell Longev 2020, 2020:6263921.
[93] Yang D, Wang J, Xiao M, Zhou T, Shi X: Role of Mir-155 in Controlling HIF-1alpha Level and Promoting Endothelial Cell Maturation. Sci Rep 2016, 6:35316.
[94] Zhou B, Zhu H, Luo H, Gao S, Dai X, Li Y, Zuo X: MicroRNA-202-3p regulates scleroderma fibrosis by targeting matrix metalloproteinase 1. Biomed Pharmacother 2017, 87:412-8.
[95] Wu HY, Wu JL, Ni ZL: Overexpression of microRNA-202-3p protects against myocardial ischemia-reperfusion injury through activation of TGF-beta1/Smads signaling pathway by targeting TRPM6. Cell Cycle 2019, 18:621-37.
[96] Serino G, Curci C, Schena FP: Role of miR-422a and kallikrein-related peptidase 4 implicated in the development of lupus nephritis. Do we work in this direction? Nephrol Dial Transplant 2016, 31:683-5.
[97] Krasoudaki E, Banos A, Stagakis E, Loupasakis K, Drakos E, Sinatkas V, Zampoulaki A, Papagianni A, Iliopoulos D, Boumpas DT, Bertsias GK: Micro-RNA analysis of renal biopsies in human lupus nephritis demonstrates up-regulated miR-422a driving reduction of kallikrein-related peptidase 4. Nephrol Dial Transplant 2016, 31:1676-86.
[98] Qiao Y, Ma N, Wang X, Hui Y, Li F, Xiang Y, Zhou J, Zou C, Jin J, Lv G, Jin H, Gao X: MiR-483-5p controls angiogenesis in vitro and targets serum response factor. FEBS Lett 2011, 585:3095-100.
[99] Ni Z, Chen Q, Huang C, Wang S, Huang Q: Sclerosing encapsulating peritonitis as a rare cause of intestinal obstruction after the treatment of peritoneal mesothelioma: a case report and review of the literature. Transl Cancer Res 2021, 10:3074-80.
[100] Caulin-Glaser T, Garcia-Cardena G, Sarrel P, Sessa WC, Bender JR: 17 beta-estradiol regulation of human endothelial cell basal nitric oxide release, independent of cytosolic Ca2+ mobilization. Circ Res 1997, 81:885-92.
[101] Fredette NC, Meyer MR, Prossnitz ER: Role of GPER in estrogen-dependent nitric oxide formation and vasodilation. J Steroid Biochem Mol Biol 2018, 176:65-72.
[102] Hodgin JB, Krege JH, Reddick RL, Korach KS, Smithies O, Maeda N: Estrogen receptor alpha is a major mediator of 17beta-estradiol′s atheroprotective effects on lesion size in Apoe-/- mice. J Clin Invest 2001, 107:333-40.
[103] Villa A, Rizzi N, Vegeto E, Ciana P, Maggi A: Estrogen accelerates the resolution of inflammation in macrophagic cells. Sci Rep 2015, 5:15224.
[104] Antman EM, DeMets D, Loscalzo J: Cyclooxygenase inhibition and cardiovascular risk. Circulation 2005, 112:759-70.
[105] McGettigan P, Henry D: Cardiovascular risk and inhibition of cyclooxygenase: a systematic review of the observational studies of selective and nonselective inhibitors of cyclooxygenase 2. JAMA 2006, 296:1633-44.
[106] Lightbody RJ, Taylor JMW, Dempsie Y, Graham A: Induction of microRNA hsa-let-7d-5p, and repression of HMGA2, contribute protection against lipid accumulation in macrophage ′foam′ cells. Biochim Biophys Acta Mol Cell Biol Lipids 2021, 1866:159005.
[107] Peng K, Jiang P, Du Y, Zeng D, Zhao J, Li M, Xia C, Xie Z, Wu J: Oxidized low-density lipoprotein accelerates the injury of endothelial cells via circ-USP36/miR-98-5p/VCAM1 axis. IUBMB Life 2021, 73:177-87.
[108] de la Guia-Galipienso F, Martinez-Ferran M, Vallecillo N, Lavie CJ, Sanchis-Gomar F, Pareja-Galeano H: Vitamin D and cardiovascular health. Clin Nutr 2021, 40:2946-57.
[109] Wang TJ, Pencina MJ, Booth SL, Jacques PF, Ingelsson E, Lanier K, Benjamin EJ, D′Agostino RB, Wolf M, Vasan RS: Vitamin D deficiency and risk of cardiovascular disease. Circulation 2008, 117:503-11.
[110] Zhou A, Selvanayagam JB, Hypponen E: Non-linear Mendelian randomization analyses support a role for vitamin D deficiency in cardiovascular disease risk. Eur Heart J 2022, 43:1731-9.
[111] Zietzer A, Steffen E, Niepmann S, Dusing P, Hosen MR, Liu W, Jamme P, Al-Kassou B, Goody PR, Zimmer S, Reiners KS, Pfeifer A, Bohm M, Werner N, Nickenig G, Jansen F: MicroRNA-mediated vascular intercellular communication is altered in chronic kidney disease. Cardiovasc Res 2022, 118:316-33.
[112] Li S, Lee C, Song J, Lu C, Liu J, Cui Y, Liang H, Cao C, Zhang F, Chen H: Circulating microRNAs as potential biomarkers for coronary plaque rupture. Oncotarget 2017, 8:48145-56.
[113] Papaetis GS, Syrigos KN: Sunitinib: a multitargeted receptor tyrosine kinase inhibitor in the era of molecular cancer therapies. BioDrugs 2009, 23:377-89.
[114] Filipowicz W, Bhattacharyya SN, Sonenberg N: Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 2008, 9:102-14.
[115] Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, Locati M, Mantovani A, Martinez FO, Mege JL, Mosser DM, Natoli G, Saeij JP, Schultze JL, Shirey KA, Sica A, Suttles J, Udalova I, van Ginderachter JA, Vogel SN, Wynn TA: Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 2014, 41:14-20.
[116] Wynn TA, Vannella KM: Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity 2016, 44:450-62.
[117] Das A, Sinha M, Datta S, Abas M, Chaffee S, Sen CK, Roy S: Monocyte and macrophage plasticity in tissue repair and regeneration. Am J Pathol 2015, 185:2596-606.
[118] Moore KJ, Sheedy FJ, Fisher EA: Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 2013, 13:709-21.
[119] Gutierrez E, Flammer AJ, Lerman LO, Elizaga J, Lerman A, Fernandez-Aviles F: Endothelial dysfunction over the course of coronary artery disease. Eur Heart J 2013, 34:3175-81.
[120] Kang JH, Kawano T, Murata M, Toita R: Vascular calcification and cellular signaling pathways as potential therapeutic targets. Life Sci 2024, 336:122309.
[121] Yin Y, Huang C, Wang Z, Huang P, Qin S: Identification of cellular heterogeneity and key signaling pathways associated with vascular remodeling and calcification in young and old primate aortas based on single-cell analysis. Aging (Albany NY) 2022, 15:982-1003.
指導教授 馬念涵(Nianhan Ma) 審核日期 2024-5-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明