參考文獻 |
[1] Knepper MA, Kwon TH, Nielsen S: Molecular physiology of water balance. N Engl J Med 2015, 372:1349-58.
[2] Kamel S. Kamel MLH: Interpretation of Electrolyte and Acid-Base Parameters in Blood and Urine. Brenner and Rector′s the Kidneyeleven ed: Elsevier, 2020. pp. 758-95. e2.
[3] Volker Vallon SB, Sanjay K. Nigam: Renal Handling of Organic Solutes. Brenner and Rector′s The KidneyEleventh ed: Elsevier, 2020. pp. 218-46.e9.
[4] Robert T. Mallet RM: The Endocrine Kidney: Local and Systemic Actions of Renal Hormones. Hormonal Signaling in Biology and Medicine. Edited by Litwack G. 2020. pp. 445-60.
[5] US Department of Health and Human Services CfDCaP: Chronic Kidney Disease in the United States, 2023. Centers for Disease Control and Prevention 2023.
[6] Tsai MH, Hsu CY, Lin MY, Yen MF, Chen HH, Chiu YH, Hwang SJ: Incidence, Prevalence, and Duration of Chronic Kidney Disease in Taiwan: Results from a Community-Based Screening Program of 106,094 Individuals. Nephron 2018, 140:175-84.
[7] Lai TS, Hsu CC, Lin MH, Wu VC, Chen YM: Trends in the incidence and prevalence of end-stage kidney disease requiring dialysis in Taiwan: 2010-2018. J Formos Med Assoc 2022, 121 Suppl 1:S5-S11.
[8] Collaboration GBDCKD: Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395:709-33.
[9] Pecoits-Filho R, Okpechi IG, Donner JA, Harris DCH, Aljubori HM, Bello AK, Bellorin-Font E, Caskey FJ, Collins A, Cueto-Manzano AM, Feehally J, Goh BL, Jager KJ, Nangaku M, Rahman M, Sahay M, Saleh A, Sola L, Turan Kazancioglu R, Walker RC, Walker R, Yao Q, Yu X, Zhao MH, Johnson DW: Capturing and monitoring global differences in untreated and treated end-stage kidney disease, kidney replacement therapy modality, and outcomes. Kidney Int Suppl (2011) 2020, 10:e3-e9.
[10] Liyanage T, Ninomiya T, Jha V, Neal B, Patrice HM, Okpechi I, Zhao MH, Lv J, Garg AX, Knight J, Rodgers A, Gallagher M, Kotwal S, Cass A, Perkovic V: Worldwide access to treatment for end-stage kidney disease: a systematic review. Lancet 2015, 385:1975-82.
[11] Li PK, Chow KM, Van de Luijtgaarden MW, Johnson DW, Jager KJ, Mehrotra R, Naicker S, Pecoits-Filho R, Yu XQ, Lameire N: Changes in the worldwide epidemiology of peritoneal dialysis. Nat Rev Nephrol 2017, 13:90-103.
[12] Wolfe RA, Ashby VB, Milford EL, Ojo AO, Ettenger RE, Agodoa LY, Held PJ, Port FK: Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N Engl J Med 1999, 341:1725-30.
[13] Tonelli M, Wiebe N, Knoll G, Bello A, Browne S, Jadhav D, Klarenbach S, Gill J: Systematic review: kidney transplantation compared with dialysis in clinically relevant outcomes. Am J Transplant 2011, 11:2093-109.
[14] Chen CF, Chen FA, Lee TL, Liao LF, Chen CY, Tan AC, Chan CH, Lin CC: Current status of dialysis and vascular access in Taiwan. J Vasc Access 2019, 20:368-73.
[15] Brown EA, Bargman J, van Biesen W, Chang MY, Finkelstein FO, Hurst H, Johnson DW, Kawanishi H, Lambie M, de Moraes TP, Morelle J, Woodrow G: Length of Time on Peritoneal Dialysis and Encapsulating Peritoneal Sclerosis - Position Paper for ISPD: 2017 Update. Perit Dial Int 2017, 37:362-74.
[16] Kawanishi H, Kawaguchi Y, Fukui H, Hara S, Imada A, Kubo H, Kin M, Nakamoto M, Ohira S, Shoji T: Encapsulating peritoneal sclerosis in Japan: a prospective, controlled, multicenter study. Am J Kidney Dis 2004, 44:729-37.
[17] Brown MC, Simpson K, Kerssens JJ, Mactier RA, Scottish Renal R: Encapsulating peritoneal sclerosis in the new millennium: a national cohort study. Clin J Am Soc Nephrol 2009, 4:1222-9.
[18] Augustine T, Brown PW, Davies SD, Summers AM, Wilkie ME: Encapsulating peritoneal sclerosis: clinical significance and implications. Nephron Clin Pract 2009, 111:c149-54; discussion c54.
[19] Korte MR, Sampimon DE, Betjes MG, Krediet RT: Encapsulating peritoneal sclerosis: the state of affairs. Nat Rev Nephrol 2011, 7:528-38.
[20] Zeier M, Schwenger V, Deppisch R, Haug U, Weigel K, Bahner U, Wanner C, Schneider H, Henle T, Ritz E: Glucose degradation products in PD fluids: do they disappear from the peritoneal cavity and enter the systemic circulation? Kidney Int 2003, 63:298-305.
[21] Tauer A, Zhang X, Schaub TP, Zimmeck T, Niwa T, Passlick-Deetjen J, Pischetsrieder M: Formation of advanced glycation end products during CAPD. Am J Kidney Dis 2003, 41:S57-60.
[22] Nakamura S, Niwa T: Advanced glycation end-products and peritoneal sclerosis. Semin Nephrol 2004, 24:502-5.
[23] Honda K, Nitta K, Horita S, Yumura W, Nihei H, Nagai R, Ikeda K, Horiuchi S: Accumulation of advanced glycation end products in the peritoneal vasculature of continuous ambulatory peritoneal dialysis patients with low ultra-filtration. Nephrol Dial Transplant 1999, 14:1541-9.
[24] Singhal M, Krishna S, Lal A, Narayanasamy S, Bal A, Yadav TD, Kochhar R, Sinha SK, Khandelwal N, Sheikh AM: Encapsulating Peritoneal Sclerosis: The Abdominal Cocoon. Radiographics 2019, 39:62-77.
[25] Chou CY, Tseng CC, Chen JB, Hung CC, Huang CC: A Matrix Metalloproteinase-2-Based Nomogram to Assess the Risk of Encapsulating Peritoneal Sclerosis in Peritoneal Dialysis Patients. Biomed Res Int 2021, 2021:6666441.
[26] Lopes Barreto D, Struijk DG, Krediet RT: Peritoneal effluent MMP-2 and PAI-1 in encapsulating peritoneal sclerosis. Am J Kidney Dis 2015, 65:748-53.
[27] Sampimon DE, Korte MR, Barreto DL, Vlijm A, de Waart R, Struijk DG, Krediet RT: Early diagnostic markers for encapsulating peritoneal sclerosis: a case-control study. Perit Dial Int 2010, 30:163-9.
[28] Habib SM, Korte MR, Betjes MG: Lower mortality and inflammation from post-transplantation encapsulating peritoneal sclerosis compared to the classical form. Am J Nephrol 2013, 37:223-30.
[29] Tseng CC, Chen JB, Wang IK, Liao SC, Cheng BC, Wu AB, Chang YT, Hung SY, Huang CC: Incidence and outcomes of encapsulating peritoneal sclerosis (EPS) and factors associated with severe EPS. PLoS One 2018, 13:e0190079.
[30] El-Sherbini N, Duncan N, Hickson M, Johansson L, Brown EA: Nutrition changes in conservatively treated patients with encapsulating peritoneal sclerosis. Perit Dial Int 2013, 33:538-43.
[31] Kuriyama S, Tomonari H: Corticosteroid therapy in encapsulating peritoneal sclerosis. Nephrol Dial Transplant 2001, 16:1304-5.
[32] Danford CJ, Lin SC, Smith MP, Wolf JL: Encapsulating peritoneal sclerosis. World J Gastroenterol 2018, 24:3101-11.
[33] Korte MR, Fieren MW, Sampimon DE, Lingsma HF, Weimar W, Betjes MG, investigators of the Dutch Multicentre EPSS: Tamoxifen is associated with lower mortality of encapsulating peritoneal sclerosis: results of the Dutch Multicentre EPS Study. Nephrol Dial Transplant 2011, 26:691-7.
[34] Summers AM, Clancy MJ, Syed F, Harwood N, Brenchley PE, Augustine T, Riad H, Hutchison AJ, Taylor P, Pearson R, Gokal R: Single-center experience of encapsulating peritoneal sclerosis in patients on peritoneal dialysis for end-stage renal failure. Kidney Int 2005, 68:2381-8.
[35] Loureiro J, Aguilera A, Selgas R, Sandoval P, Albar-Vizcaino P, Perez-Lozano ML, Ruiz-Carpio V, Majano PL, Lamas S, Rodriguez-Pascual F, Borras-Cuesta F, Dotor J, Lopez-Cabrera M: Blocking TGF-beta1 protects the peritoneal membrane from dialysate-induced damage. J Am Soc Nephrol 2011, 22:1682-95.
[36] Kawanishi H, Shintaku S, Moriishi M, Dohi K, Tsuchiya S: Seventeen years′ experience of surgical options for encapsulating peritoneal sclerosis. Adv Perit Dial 2011, 27:53-8.
[37] Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY: Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 2004, 351:1296-305.
[38] Sarnak MJ, Amann K, Bangalore S, Cavalcante JL, Charytan DM, Craig JC, Gill JS, Hlatky MA, Jardine AG, Landmesser U, Newby LK, Herzog CA, Cheung M, Wheeler DC, Winkelmayer WC, Marwick TH, Conference P: Chronic Kidney Disease and Coronary Artery Disease: JACC State-of-the-Art Review. J Am Coll Cardiol 2019, 74:1823-38.
[39] Aoki J, Ikari Y: Cardiovascular Disease in Patients with End-Stage Renal Disease on Hemodialysis. Ann Vasc Dis 2017, 10:327-37.
[40] Bansal N: Evolution of Cardiovascular Disease During the Transition to End-Stage Renal Disease. Semin Nephrol 2017, 37:120-31.
[41] De Lima JJ, Gowdak LH, de Paula FJ: Diagnosis and treatment of coronary artery disease in hemodialysis patients evaluated for transplant. Transplant Res 2012, 1:3.
[42] Rostand SG, Kirk KA, Rutsky EA: Dialysis-associated ischemic heart disease: insights from coronary angiography. Kidney Int 1984, 25:653-9.
[43] Ohtake T, Kobayashi S, Moriya H, Negishi K, Okamoto K, Maesato K, Saito S: High prevalence of occult coronary artery stenosis in patients with chronic kidney disease at the initiation of renal replacement therapy: an angiographic examination. J Am Soc Nephrol 2005, 16:1141-8.
[44] Herzog CA, Ma JZ, Collins AJ: Poor long-term survival after acute myocardial infarction among patients on long-term dialysis. N Engl J Med 1998, 339:799-805.
[45] Shroff GR, Frederick PD, Herzog CA: Renal failure and acute myocardial infarction: clinical characteristics in patients with advanced chronic kidney disease, on dialysis, and without chronic kidney disease. A collaborative project of the United States Renal Data System/National Institutes of Health and the National Registry of Myocardial Infarction. Am Heart J 2012, 163:399-406.
[46] Wang LW, Fahim MA, Hayen A, Mitchell RL, Lord SW, Baines LA, Craig JC, Webster AC: Cardiac testing for coronary artery disease in potential kidney transplant recipients: a systematic review of test accuracy studies. Am J Kidney Dis 2011, 57:476-87.
[47] Muntner P, He J, Astor BC, Folsom AR, Coresh J: Traditional and nontraditional risk factors predict coronary heart disease in chronic kidney disease: results from the atherosclerosis risk in communities study. J Am Soc Nephrol 2005, 16:529-38.
[48] Stenvinkel P, Carrero JJ, Axelsson J, Lindholm B, Heimburger O, Massy Z: Emerging biomarkers for evaluating cardiovascular risk in the chronic kidney disease patient: how do new pieces fit into the uremic puzzle? Clin J Am Soc Nephrol 2008, 3:505-21.
[49] Jansz TT, van Reekum FE, Ozyilmaz A, de Jong PA, Boereboom FTJ, Hoekstra T, Verhaar MC, van Jaarsveld BC: Coronary Artery Calcification in Hemodialysis and Peritoneal Dialysis. Am J Nephrol 2018, 48:369-77.
[50] Shroff RC, Shanahan CM: The vascular biology of calcification. Semin Dial 2007, 20:103-9.
[51] Batyraliev T, Ayalp MR, Sercelik A, Karben Z, Dinler G, Besnili F, Ozgul S, Perchucov I: Complications of cardiac catheterization: a single-center study. Angiology 2005, 56:75-80.
[52] Chandrasekar B, Doucet S, Bilodeau L, Crepeau J, deGuise P, Gregoire J, Gallo R, Cote G, Bonan R, Joyal M, Gosselin G, Tanguay JF, Dyrda I, Bois M, Pasternac A: Complications of cardiac catheterization in the current era: a single-center experience. Catheter Cardiovasc Interv 2001, 52:289-95.
[53] Wang AY, Lai KN: Use of cardiac biomarkers in end-stage renal disease. J Am Soc Nephrol 2008, 19:1643-52.
[54] Detrano R, Gianrossi R, Mulvihill D, Lehmann K, Dubach P, Colombo A, Froelicher V: Exercise-induced ST segment depression in the diagnosis of multivessel coronary disease: a meta analysis. J Am Coll Cardiol 1989, 14:1501-8.
[55] De Vriese AS, Vandecasteele SJ, Van den Bergh B, De Geeter FW: Should we screen for coronary artery disease in asymptomatic chronic dialysis patients? Kidney Int 2012, 81:143-51.
[56] Wang LW, Fahim MA, Hayen A, Mitchell RL, Baines L, Lord S, Craig JC, Webster AC: Cardiac testing for coronary artery disease in potential kidney transplant recipients. Cochrane Database Syst Rev 2011:CD008691.
[57] Winther S, Svensson M, Jorgensen HS, Bouchelouche K, Gormsen LC, Pedersen BB, Holm NR, Botker HE, Ivarsen P, Bottcher M: Diagnostic Performance of Coronary CT Angiography and Myocardial Perfusion Imaging in Kidney Transplantation Candidates. JACC Cardiovasc Imaging 2015, 8:553-62.
[58] Chen C, Wang J, Pan D, Wang X, Xu Y, Yan J, Wang L, Yang X, Yang M, Liu GP: Applications of multi-omics analysis in human diseases. MedComm (2020) 2023, 4:e315.
[59] Hasin Y, Seldin M, Lusis A: Multi-omics approaches to disease. Genome Biol 2017, 18:83.
[60] Bartel DP: MicroRNAs: Genomics, Biogenesis, Mecahnism, and Function. Cell 2004, 116.
[61] Gurianova V, Stroy D, Ciccocioppo R, Gasparova I, Petrovic D, Soucek M, Dosenko V, Kruzliak P: Stress response factors as hub-regulators of microRNA biogenesis: implication to the diseased heart. Cell Biochem Funct 2015, 33:509-18.
[62] Ardekani AM, Naeini MM: The Role of MicroRNAs in Human Diseases. Avicenna J Med Biotechnol 2010, 2:161-79.
[63] Ullah S, John P, Bhatti A: MicroRNAs with a role in gene regulation and in human diseases. Mol Biol Rep 2014, 41:225-32.
[64] Kasinski AL, Slack FJ: Epigenetics and genetics. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer 2011, 11:849-64.
[65] Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR: MicroRNA expression profiles classify human cancers. Nature 2005, 435:834-8.
[66] Mall C, Rocke DM, Durbin-Johnson B, Weiss RH: Stability of miRNA in human urine supports its biomarker potential. Biomark Med 2013, 7:623-31.
[67] Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O′Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M: Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 2008, 105:10513-8.
[68] Sundarbose K, Kartha RV, Subramanian S: MicroRNAs as Biomarkers in Cancer. Diagnostics (Basel) 2013, 3:84-104.
[69] Negrini M, Nicoloso MS, Calin GA: MicroRNAs and cancer--new paradigms in molecular oncology. Curr Opin Cell Biol 2009, 21:470-9.
[70] Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, Galas DJ, Wang K: The microRNA spectrum in 12 body fluids. Clin Chem 2010, 56:1733-41.
[71] Che M, Shi T, Feng S, Li H, Zhang X, Feng N, Lou W, Dou J, Tang G, Huang C, Xu G, Qian Q, Sun S, He L, Wang H: The MicroRNA-199a/214 Cluster Targets E-Cadherin and Claudin-2 and Promotes High Glucose-Induced Peritoneal Fibrosis. J Am Soc Nephrol 2017, 28:2459-71.
[72] Szeto CC, Chow KM, Kwan BC, Cheng PM, Luk CC, Ng JK, Law MC, Leung CB, Li PK: Peritoneal dialysis effluent miR-21 and miR-589 levels correlate with longitudinal change in peritoneal transport characteristics. Clin Chim Acta 2017, 464:106-12.
[73] Kaur A, Mackin ST, Schlosser K, Wong FL, Elharram M, Delles C, Stewart DJ, Dayan N, Landry T, Pilote L: Systematic review of microRNA biomarkers in acute coronary syndrome and stable coronary artery disease. Cardiovasc Res 2020, 116:1113-24.
[74] Wang LW, Fahim MA, Hayen A, Mitchell RL, Baines L, Lord S, Craig JC, Webster AC: Cardiac testing for coronary artery disease in potential kidney transplant recipients. Cochrane Database Syst Rev 2011, 2011:CD008691.
[75] Di Carli MF, Kwong RY, Solomon SD: Noninvasive Cardiac Imaging: Echocardiography, Nuclear Cardiology, and Magnetic Resonance/Computed Tomography Imaging. Harrison′s Principles of Internal Medicine, 21e. Edited by Loscalzo J, Fauci A, Kasper D, Hauser S, Longo D, Jameson JL. New York, NY: McGraw-Hill Education, 2022.
[76] Tarzi RM, Lim A, Moser S, Ahmad S, George A, Balasubramaniam G, Clutterbuck EJ, Gedroyc W, Brown EA: Assessing the validity of an abdominal CT scoring system in the diagnosis of encapsulating peritoneal sclerosis. Clin J Am Soc Nephrol 2008, 3:1702-10.
[77] Correction to: 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022, 145:e772.
[78] Li AL, Chung TS, Chan YN, Chen CL, Lin SC, Chiang YR, Lin CH, Chen CC, Ma N: microRNA expression pattern as an ancillary prognostic signature for radiotherapy. J Transl Med 2018, 16:341.
[79] Chen CL, Lin CH, Li AL, Huang CC, Shen BY, Chiang YR, Fang PL, Chang HC, Li KL, Yang WC, Horng JT, Ma N: Plasma miRNA profile is a biomarker associated with urothelial carcinoma in chronic hemodialysis patients. Am J Physiol Renal Physiol 2019, 316:F1094-F102.
[80] Chang L, Zhou G, Soufan O, Xia J: miRNet 2.0: network-based visual analytics for miRNA functional analysis and systems biology. Nucleic Acids Res 2020, 48:W244-W51.
[81] Jassal B, Matthews L, Viteri G, Gong C, Lorente P, Fabregat A, Sidiropoulos K, Cook J, Gillespie M, Haw R, Loney F, May B, Milacic M, Rothfels K, Sevilla C, Shamovsky V, Shorser S, Varusai T, Weiser J, Wu G, Stein L, Hermjakob H, D′Eustachio P: The reactome pathway knowledgebase. Nucleic Acids Res 2020, 48:D498-D503.
[82] Kang J, Tang Q, He J, Li L, Yang N, Yu S, Wang M, Zhang Y, Lin J, Cui T, Hu Y, Tan P, Cheng J, Zheng H, Wang D, Su X, Chen W, Huang Y: RNAInter v4.0: RNA interactome repository with redefined confidence scoring system and improved accessibility. Nucleic Acids Res 2022, 50:D326-D32.
[83] Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003, 13:2498-504.
[84] Gebert LFR, MacRae IJ: Regulation of microRNA function in animals. Nat Rev Mol Cell Biol 2019, 20:21-37.
[85] Aroeira LS, Aguilera A, Sanchez-Tomero JA, Bajo MA, del Peso G, Jimenez-Heffernan JA, Selgas R, Lopez-Cabrera M: Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: pathologic significance and potential therapeutic interventions. J Am Soc Nephrol 2007, 18:2004-13.
[86] Li J, Li SX, Gao XH, Zhao LF, Du J, Wang TY, Wang L, Zhang J, Wang HY, Dong R, Guo ZY: HIF1A and VEGF regulate each other by competing endogenous RNA mechanism and involve in the pathogenesis of peritoneal fibrosis. Pathol Res Pract 2019, 215:644-52.
[87] Yu F, Lu Z, Huang K, Wang X, Xu Z, Chen B, Dong P, Zheng J: MicroRNA-17-5p-activated Wnt/beta-catenin pathway contributes to the progression of liver fibrosis. Oncotarget 2016, 7:81-93.
[88] Chen X, Gu L, Cheng X, Xing J, Zhang M: MiR-17-5p downregulation alleviates apoptosis and fibrosis in high glucose-induced human mesangial cells through inactivation of Wnt/beta-catenin signaling by targeting KIF23. Environ Toxicol 2021, 36:1702-12.
[89] Cao RY, Li Q, Miao Y, Zhang Y, Yuan W, Fan L, Liu G, Mi Q, Yang J: The Emerging Role of MicroRNA-155 in Cardiovascular Diseases. Biomed Res Int 2016, 2016:9869208.
[90] Wang D, Liu Z, Yan Z, Liang X, Liu X, Liu Y, Wang P, Bai C, Gu Y, Zhou PK: MiRNA-155-5p inhibits epithelium-to-mesenchymal transition (EMT) by targeting GSK-3beta during radiation-induced pulmonary fibrosis. Arch Biochem Biophys 2021, 697:108699.
[91] Chen Y, Xu D, Yao J, Wei Z, Li S, Gao X, Cai W, Mao N, Jin F, Li Y, Zhu Y, Li S, Liu H, Yang F, Xu H: Inhibition of miR-155-5p Exerts Anti-Fibrotic Effects in Silicotic Mice by Regulating Meprin alpha. Mol Ther Nucleic Acids 2020, 19:350-60.
[92] Zhang W, Li X, Tang Y, Chen C, Jing R, Liu T: miR-155-5p Implicates in the Pathogenesis of Renal Fibrosis via Targeting SOCS1 and SOCS6. Oxid Med Cell Longev 2020, 2020:6263921.
[93] Yang D, Wang J, Xiao M, Zhou T, Shi X: Role of Mir-155 in Controlling HIF-1alpha Level and Promoting Endothelial Cell Maturation. Sci Rep 2016, 6:35316.
[94] Zhou B, Zhu H, Luo H, Gao S, Dai X, Li Y, Zuo X: MicroRNA-202-3p regulates scleroderma fibrosis by targeting matrix metalloproteinase 1. Biomed Pharmacother 2017, 87:412-8.
[95] Wu HY, Wu JL, Ni ZL: Overexpression of microRNA-202-3p protects against myocardial ischemia-reperfusion injury through activation of TGF-beta1/Smads signaling pathway by targeting TRPM6. Cell Cycle 2019, 18:621-37.
[96] Serino G, Curci C, Schena FP: Role of miR-422a and kallikrein-related peptidase 4 implicated in the development of lupus nephritis. Do we work in this direction? Nephrol Dial Transplant 2016, 31:683-5.
[97] Krasoudaki E, Banos A, Stagakis E, Loupasakis K, Drakos E, Sinatkas V, Zampoulaki A, Papagianni A, Iliopoulos D, Boumpas DT, Bertsias GK: Micro-RNA analysis of renal biopsies in human lupus nephritis demonstrates up-regulated miR-422a driving reduction of kallikrein-related peptidase 4. Nephrol Dial Transplant 2016, 31:1676-86.
[98] Qiao Y, Ma N, Wang X, Hui Y, Li F, Xiang Y, Zhou J, Zou C, Jin J, Lv G, Jin H, Gao X: MiR-483-5p controls angiogenesis in vitro and targets serum response factor. FEBS Lett 2011, 585:3095-100.
[99] Ni Z, Chen Q, Huang C, Wang S, Huang Q: Sclerosing encapsulating peritonitis as a rare cause of intestinal obstruction after the treatment of peritoneal mesothelioma: a case report and review of the literature. Transl Cancer Res 2021, 10:3074-80.
[100] Caulin-Glaser T, Garcia-Cardena G, Sarrel P, Sessa WC, Bender JR: 17 beta-estradiol regulation of human endothelial cell basal nitric oxide release, independent of cytosolic Ca2+ mobilization. Circ Res 1997, 81:885-92.
[101] Fredette NC, Meyer MR, Prossnitz ER: Role of GPER in estrogen-dependent nitric oxide formation and vasodilation. J Steroid Biochem Mol Biol 2018, 176:65-72.
[102] Hodgin JB, Krege JH, Reddick RL, Korach KS, Smithies O, Maeda N: Estrogen receptor alpha is a major mediator of 17beta-estradiol′s atheroprotective effects on lesion size in Apoe-/- mice. J Clin Invest 2001, 107:333-40.
[103] Villa A, Rizzi N, Vegeto E, Ciana P, Maggi A: Estrogen accelerates the resolution of inflammation in macrophagic cells. Sci Rep 2015, 5:15224.
[104] Antman EM, DeMets D, Loscalzo J: Cyclooxygenase inhibition and cardiovascular risk. Circulation 2005, 112:759-70.
[105] McGettigan P, Henry D: Cardiovascular risk and inhibition of cyclooxygenase: a systematic review of the observational studies of selective and nonselective inhibitors of cyclooxygenase 2. JAMA 2006, 296:1633-44.
[106] Lightbody RJ, Taylor JMW, Dempsie Y, Graham A: Induction of microRNA hsa-let-7d-5p, and repression of HMGA2, contribute protection against lipid accumulation in macrophage ′foam′ cells. Biochim Biophys Acta Mol Cell Biol Lipids 2021, 1866:159005.
[107] Peng K, Jiang P, Du Y, Zeng D, Zhao J, Li M, Xia C, Xie Z, Wu J: Oxidized low-density lipoprotein accelerates the injury of endothelial cells via circ-USP36/miR-98-5p/VCAM1 axis. IUBMB Life 2021, 73:177-87.
[108] de la Guia-Galipienso F, Martinez-Ferran M, Vallecillo N, Lavie CJ, Sanchis-Gomar F, Pareja-Galeano H: Vitamin D and cardiovascular health. Clin Nutr 2021, 40:2946-57.
[109] Wang TJ, Pencina MJ, Booth SL, Jacques PF, Ingelsson E, Lanier K, Benjamin EJ, D′Agostino RB, Wolf M, Vasan RS: Vitamin D deficiency and risk of cardiovascular disease. Circulation 2008, 117:503-11.
[110] Zhou A, Selvanayagam JB, Hypponen E: Non-linear Mendelian randomization analyses support a role for vitamin D deficiency in cardiovascular disease risk. Eur Heart J 2022, 43:1731-9.
[111] Zietzer A, Steffen E, Niepmann S, Dusing P, Hosen MR, Liu W, Jamme P, Al-Kassou B, Goody PR, Zimmer S, Reiners KS, Pfeifer A, Bohm M, Werner N, Nickenig G, Jansen F: MicroRNA-mediated vascular intercellular communication is altered in chronic kidney disease. Cardiovasc Res 2022, 118:316-33.
[112] Li S, Lee C, Song J, Lu C, Liu J, Cui Y, Liang H, Cao C, Zhang F, Chen H: Circulating microRNAs as potential biomarkers for coronary plaque rupture. Oncotarget 2017, 8:48145-56.
[113] Papaetis GS, Syrigos KN: Sunitinib: a multitargeted receptor tyrosine kinase inhibitor in the era of molecular cancer therapies. BioDrugs 2009, 23:377-89.
[114] Filipowicz W, Bhattacharyya SN, Sonenberg N: Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 2008, 9:102-14.
[115] Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, Locati M, Mantovani A, Martinez FO, Mege JL, Mosser DM, Natoli G, Saeij JP, Schultze JL, Shirey KA, Sica A, Suttles J, Udalova I, van Ginderachter JA, Vogel SN, Wynn TA: Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 2014, 41:14-20.
[116] Wynn TA, Vannella KM: Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity 2016, 44:450-62.
[117] Das A, Sinha M, Datta S, Abas M, Chaffee S, Sen CK, Roy S: Monocyte and macrophage plasticity in tissue repair and regeneration. Am J Pathol 2015, 185:2596-606.
[118] Moore KJ, Sheedy FJ, Fisher EA: Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 2013, 13:709-21.
[119] Gutierrez E, Flammer AJ, Lerman LO, Elizaga J, Lerman A, Fernandez-Aviles F: Endothelial dysfunction over the course of coronary artery disease. Eur Heart J 2013, 34:3175-81.
[120] Kang JH, Kawano T, Murata M, Toita R: Vascular calcification and cellular signaling pathways as potential therapeutic targets. Life Sci 2024, 336:122309.
[121] Yin Y, Huang C, Wang Z, Huang P, Qin S: Identification of cellular heterogeneity and key signaling pathways associated with vascular remodeling and calcification in young and old primate aortas based on single-cell analysis. Aging (Albany NY) 2022, 15:982-1003. |