參考文獻 |
1. Brown, R. XXVII. A brief account of microscopical observations made in the months of June, July and August 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. The Philosophical Magazine 4, 161–173. eprint: https://doi.org/10. 1080/14786442808674769. https://doi.org/10.1080/14786442808674769 (1828).
2. Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der physik 322, 549–560 (1905).
3. Langevin, P. Sur la théorie du mouvement brownien. Comptes Rendus de l’Academie des Sciences 146, 530–533 (1908).
4. Perrin, J. Mouvement brownien et grandeurs moléculaires. Le Radium 6, 353– 360 (1909).
5. Carnot, S. Réflexions sur la puissance motrice du feu et sur les machines pro- pres à développer cette puissance in Annales scientifiques de l’École Normale Supérieure 1 (1824), 393–457.
6. Kongtragool, B. & Wongwises, S. A review of solar-powered Stirling engines and low temperature differential Stirling engines. Renewable and Sustainable energy reviews 7, 131–154 (2003).
7. Visscher, K., Schnitzer, M. J. & Block, S. M. Single kinesin molecules studied with a molecular force clamp. Nature 400, 184–189 (1999).
8. Wang, M. D. et al. Force and velocity measured for single molecules of RNA polymerase. Science 282, 902–907 (1998).
9. Kellermayer, M. S., Smith, S. B., Granzier, H. L. & Bustamante, C. Folding- unfolding transitions in single titin molecules characterized with laser tweezers. Science 276, 1112–1116 (1997).
10. Kishino, A. & Yanagida, T. Force measurements by micromanipulation of a single actin filament by glass needles. Nature 334, 74–76 (1988).
11. Gosse, C. & Croquette, V. Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophysical journal 82, 3314–3329 (2002).
12. Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single- beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290. http://ol.osa.org/abstract.cfm?URI=ol-11-5-288 (1986).
13. Harada, Y. & Asakura, T. Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Optics Communications 124, 529–541. issn: 0030-4018. https: //www.sciencedirect.com/science/article/pii/0030401895007539 (1996).
14. Neuman, K. C. & Block, S. M. Optical trapping. Review of scientific instruments 75, 2787–2809 (2004).
15. Schmiedl, T. & Seifert, U. Efficiency at maximum power: An analytically solvable model for stochastic heat engines. EPL (Europhysics Letters) 81, 20003. https: //doi.org/10.1209/0295-5075/81/20003 (2007).
16. Blickle, V. & Bechinger, C. Realization of a micrometre-sized stochastic heat engine. Nature Physics 8, 143–146 (2012).
17. Martínez, I. A., Roldán, É., Dinis, L., Petrov, D. & Rica, R. A. Adiabatic pro- cesses realized with a trapped Brownian particle. Physical review letters 114, 120601 (2015).
18. Martínez, I. A. et al. Brownian carnot engine. Nature physics 12, 67–70 (2016).
19. Von Smoluchowski, M. Experimentell nachweisbare, der Ublichen Thermody- namik widersprechende Molekularphenomene. Physikalische Zeitschrift 13, 1069 (1912).
20. Feynman, R. P., Leighton, R. B. & Sands, M. Lectures on physics, vol. 1, chapter 46 1963.
21. Bang, J. et al. Experimental realization of Feynman’s ratchet. New Journal of
Physics 20, 103032 (2018).
22. Nakayama, Y., Kawaguchi, K. & Nakagawa, N. Unattainability of Carnot effi- ciency in thermal motors: Coarse graining and entropy production of Feynman- Smoluchowski ratchets. Physical Review E 98, 022102 (2018).
23. Chiang, K.-H., Lee, C.-L., Lai, P.-Y. & Chen, Y.-F. Electrical autonomous Brow- nian gyrator. Physical Review E 96, 032123 (2017).
24. Argun, A. et al. Experimental realization of a minimal microscopic heat engine. Physical Review E 96, 052106 (2017).
25. Park, J.-M., Chun, H.-M. & Noh, J. D. Efficiency at maximum power and effi- ciency fluctuations in a linear Brownian heat-engine model. Physical Review E 94, 012127 (2016).
26. Lee, J. S., Park, J.-M. & Park, H. Brownian heat engine with active reservoirs. Physical Review E 102, 32116. issn: 2470-0045. arXiv: 2003.13189. https: //doi.org/10.1103/PhysRevE.102.032116 (2020).
27. Albay, J. A., Paneru, G., Pak, H. K. & Jun, Y. Optical tweezers as a mathe- matically driven spatio-temporal potential generator. Optics express 26, 29906– 29915 (2018).
28. Albay, J. A. C., Zhou, Z.-y., Chang, C.-h. & Jun, Y. Shift a laser beam back and forth to exchange heat and work in thermodynamics. Sci. Rep. 11, 4394. https://doi.org/10.1038/s41598-021-83824-7http://www.nature.com/ articles/s41598-021-83824-7 (2021).
29. Uffink, J. & Van Lith, J. Thermodynamic uncertainty relations. Foundations of physics 29, 655–692 (1999).
30. Barato, A. C. & Seifert, U. Thermodynamic uncertainty relation for biomolec- ular processes. Physical review letters 114, 158101 (2015).
31. Stokes, G. On the effect of internal friction of fluids on the motion of pendulums. Trans. Camb. phi1. S0c 9, 106 (1850).
32. Boltzmann, L. Vorlesungen über Gastheorie: Th. Theorie van der Waals’; Gase mit zusammengesetzten Molekülen; Gasdissociation; Schlussbemerkungen (JA Barth, 1898).
33. Gibbs, J. W. Elementary principles in statistical mechanics (Charles Scribner’s Sons, 1902).
34. Sekimoto, K. Langevin equation and thermodynamics. Progress of Theoretical Physics Supplement 130, 17–27 (1998).
35. Sekimoto, K. Stochastic energetics (Springer, 2010).
36. Seifert, U. Stochastic thermodynamics, fluctuation theorems and molecular ma- chines. Reports on progress in physics. Physical Society (Great Britain) 75, 126001. http://www.ncbi.nlm.nih.gov/pubmed/23168354 (2012).
37. Evans, D. J., Cohen, E. G. D. & Morriss, G. P. Probability of second law viola- tions in shearing steady states. Physical review letters 71, 2401 (1993).
38. Pietzonka, P. & Seifert, U. Universal Trade-Off between Power, Efficiency, and Constancy in Steady-State Heat Engines. Physical Review Letters 120, 190602. https://doi.org/10.1103/PhysRevLett.120.190602 (2018).
39. Li, J., Horowitz, J. M., Gingrich, T. R. & Fakhri, N. Quantifying dissipation using fluctuating currents. Nature Communications 10, 1666. http://www. nature.com/articles/s41467-019-09631-x (2019).
40. Jun, Y. & Bechhoefer, J. Virtual potentials for feedback traps. Physical Review E 86, 061106 (2012).
41. Kumar, A. & Bechhoefer, J. Optical feedback tweezers in Optical Trapping and Optical Micromanipulation XV 10723 (2018), 107232J.
42. Cohen, A. E. Control of Nanoparticles with Arbitrary Two-Dimensional Force Fields. Phys. Rev. Lett. 94, 118102. https://link.aps.org/doi/10.1103/ PhysRevLett.94.118102 (11 2005).
43. Allersma, M. W., Gittes, F., deCastro, M. J., Stewart, R. J. & Schmidt, C. F. Two-dimensional tracking of ncd motility by back focal plane interferometry. Biophysical journal 74, 1074–1085 (1998).
44. Polettini, M. & Esposito, M. Carnot efficiency at divergent power output. EPL
(Europhysics Letters) 118, 40003 (2017).
45. Krishnamurthy, S., Ghosh, S., Chatterji, D., Ganapathy, R. & Sood, A. K. A micrometre-sized heat engine operating between bacterial reservoirs. Nature Physics 12, 1134–1138. issn: 17452481 (2016).
46. Zakine, R., Solon, A., Gingrich, T. & van Wijland, F. Stochastic Stirling Engine Operating in Contact with Active Baths. Entropy 19, 193. http://www.mdpi. com/1099-4300/19/5/193 (2017).
47. Holubec, V., Steffenoni, S., Falasco, G. & Kroy, K. Active Brownian heat engines. Physical Review Research 2, 043262. https://link.aps.org/doi/10.1103/ PhysRevResearch.2.043262 (2020).
48. Jung, P. & Hänggi, P. Dynamical systems: a unified colored-noise approxima- tion. Physical review A 35, 4464 (1987).
49. Uhlenbeck, G. E. & Ornstein, L. S. On the Theory of the Brownian Motion. Phys. Rev. 36, 823–841. https://link.aps.org/doi/10.1103/PhysRev.36.823 (5 1930). |