博碩士論文 108222036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:74 、訪客IP:18.217.224.194
姓名 林文麒(Wenqi Lin)  查詢紙本館藏   畢業系所 物理學系
論文名稱 布朗粒子的自發性熱機
(Autonomous Heat Engines of a Brownian Particle)
相關論文
★ 等溫過程中平衡捷徑之實驗研究★ 蜂擁菌群中被動粒子統計特性之實驗研究
★ 研究在擁擠環境中由多個驅動蛋白拖曳的貨物速度★ Stochastic thermodynamics of colloidal heat engines
★ 長鏈被動粒子浸於主動群泳菌落的結構動力學★ Impact of Individual Variants in Cell Lengths on the Dynamics of Bacterial Swarming
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 熱擾動對微觀物體的影響至關重要。最近,一些研究表明熱擾動轉化為機械功,稱為微觀熱動機。對熱機的研究主要集中在熱力學能量上,如熱、功和效率,以及熱力學流(熱流量或功率)與熵生產(或效率)之間的關係,稱為熱力學不確定性關係。在這篇論文中,我報告了布朗粒子的自主熱機的演示,該熱機被回饋控制的光學鑷子限制在傾斜的二維諧位能中,並浸在兩個不同溫度的熱浴中,溫度為橫和縱方向。我表明,線性熱機可以通過對粒子上充分調整的不對稱非保守耦合力實現卡諾效率。我還發現,流量的擾動,被其平方正規化後,與熵生產或效率的反向緊密相連,這與熱力學不確定性關係理論非常一致。
摘要(英) The effect of thermal fluctuations is critical on microscopic objects. Recently, several researches have demonstrated the mechanical transducers to convert thermal fluctuations to mechanical work, called the microscopic heat engines. The studies on the engine mainly focus on the thermodynamic energetics, such as heat, work, and efficiency, as well as the relation between the current fluctuations (the heat or work rate) and entropy production (or efficiency), known as the thermodynamic uncertainty relation (TUR). In this thesis, I report the demonstration of the autonomous heat engine of a Brownian particle confined in a tilted two-dimensional harmonic potential and immersed in two heat baths of different temperatures in x- and y-direction by feedback-controlled optical tweezers. I show that the linear engine can achieve the Carnot efficiency by the asymmetric non-conservative coupling force acting on the particle adequately tuned. I also find that the fluctuations of current rescaled by the averaged current square are tightly bound by the inverse of entropy production or efficiency, which agrees well with the theories of TUR.
關鍵字(中) ★ 隨機熱力學
★ 熱機
★ 膠體粒子
★ 布朗運動
★ 熱力學不確定性關係
★ 回饋控制
★ 光學鑷子
關鍵字(英) ★ Stochastic thermodynamics
★ Heat engine
★ Colloidal particle
★ Brownian motion
★ Thermodynamic uncertainty relation
★ Feedback control
★ Optical tweezers
論文目次 摘要 i
Abstract iii
Acknowledgements v
1 Introduction 1
1.1 Thermal fluctuations 1
1.2 Heat engines 2
1.3 Microscopic heat engines 3
1.4 Autonomous linear Brownian engine 4
2 Theories 5
2.1 Temperature and Microscopic Particles 5
2.2 Stochastic thermodynamics 7
2.3 Thermodynamic uncertainty relations 8
3 Brownian Gyrator 11
3.1 Brownian gyrator 11
3.2 Energetics 14
3.2.1 Power, heat rate, and efficiency 14
4 Optical Feedback Trap 17
4.1 Optical tweezers 17
4.1.1 Basic principle 17
4.1.2 Optical components and alignment 19
4.2 Feedback control 23
4.2.1 Feedback loop 23
4.2.2 Control of artificial temperature 24
4.2.3 Generation of two-dimensional potential with artificial temperature 24
4.2.4 Calibration of the optical feedback trap 26
4.3 Demonstration of two-dimensional potential and artificial temperature 28
5 Results 31
5.1 Particle trajectory 31
5.2 Performance 33
5.3 Current fluctuations and entropy production 36
6 Discussion and Outlook 39
6.1 Summary 39
6.2 Outlook: Heat engine in non-equilibrium bath 40
Appendices 41
A The linear heat engine in the active bath 43
A.0.1 Active bath 43
Bibliography 47
參考文獻 1. Brown, R. XXVII. A brief account of microscopical observations made in the months of June, July and August 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. The Philosophical Magazine 4, 161–173. eprint: https://doi.org/10. 1080/14786442808674769. https://doi.org/10.1080/14786442808674769 (1828).
2. Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der physik 322, 549–560 (1905).
3. Langevin, P. Sur la théorie du mouvement brownien. Comptes Rendus de l’Academie des Sciences 146, 530–533 (1908).
4. Perrin, J. Mouvement brownien et grandeurs moléculaires. Le Radium 6, 353– 360 (1909).
5. Carnot, S. Réflexions sur la puissance motrice du feu et sur les machines pro- pres à développer cette puissance in Annales scientifiques de l’École Normale Supérieure 1 (1824), 393–457.
6. Kongtragool, B. & Wongwises, S. A review of solar-powered Stirling engines and low temperature differential Stirling engines. Renewable and Sustainable energy reviews 7, 131–154 (2003).
7. Visscher, K., Schnitzer, M. J. & Block, S. M. Single kinesin molecules studied with a molecular force clamp. Nature 400, 184–189 (1999).
8. Wang, M. D. et al. Force and velocity measured for single molecules of RNA polymerase. Science 282, 902–907 (1998).
9. Kellermayer, M. S., Smith, S. B., Granzier, H. L. & Bustamante, C. Folding- unfolding transitions in single titin molecules characterized with laser tweezers. Science 276, 1112–1116 (1997).
10. Kishino, A. & Yanagida, T. Force measurements by micromanipulation of a single actin filament by glass needles. Nature 334, 74–76 (1988).
11. Gosse, C. & Croquette, V. Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophysical journal 82, 3314–3329 (2002).
12. Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single- beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290. http://ol.osa.org/abstract.cfm?URI=ol-11-5-288 (1986).
13. Harada, Y. & Asakura, T. Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Optics Communications 124, 529–541. issn: 0030-4018. https: //www.sciencedirect.com/science/article/pii/0030401895007539 (1996).
14. Neuman, K. C. & Block, S. M. Optical trapping. Review of scientific instruments 75, 2787–2809 (2004).
15. Schmiedl, T. & Seifert, U. Efficiency at maximum power: An analytically solvable model for stochastic heat engines. EPL (Europhysics Letters) 81, 20003. https: //doi.org/10.1209/0295-5075/81/20003 (2007).
16. Blickle, V. & Bechinger, C. Realization of a micrometre-sized stochastic heat engine. Nature Physics 8, 143–146 (2012).
17. Martínez, I. A., Roldán, É., Dinis, L., Petrov, D. & Rica, R. A. Adiabatic pro- cesses realized with a trapped Brownian particle. Physical review letters 114, 120601 (2015).
18. Martínez, I. A. et al. Brownian carnot engine. Nature physics 12, 67–70 (2016).
19. Von Smoluchowski, M. Experimentell nachweisbare, der Ublichen Thermody- namik widersprechende Molekularphenomene. Physikalische Zeitschrift 13, 1069 (1912).
20. Feynman, R. P., Leighton, R. B. & Sands, M. Lectures on physics, vol. 1, chapter 46 1963.
21. Bang, J. et al. Experimental realization of Feynman’s ratchet. New Journal of
Physics 20, 103032 (2018).
22. Nakayama, Y., Kawaguchi, K. & Nakagawa, N. Unattainability of Carnot effi- ciency in thermal motors: Coarse graining and entropy production of Feynman- Smoluchowski ratchets. Physical Review E 98, 022102 (2018).
23. Chiang, K.-H., Lee, C.-L., Lai, P.-Y. & Chen, Y.-F. Electrical autonomous Brow- nian gyrator. Physical Review E 96, 032123 (2017).
24. Argun, A. et al. Experimental realization of a minimal microscopic heat engine. Physical Review E 96, 052106 (2017).
25. Park, J.-M., Chun, H.-M. & Noh, J. D. Efficiency at maximum power and effi- ciency fluctuations in a linear Brownian heat-engine model. Physical Review E 94, 012127 (2016).
26. Lee, J. S., Park, J.-M. & Park, H. Brownian heat engine with active reservoirs. Physical Review E 102, 32116. issn: 2470-0045. arXiv: 2003.13189. https: //doi.org/10.1103/PhysRevE.102.032116 (2020).
27. Albay, J. A., Paneru, G., Pak, H. K. & Jun, Y. Optical tweezers as a mathe- matically driven spatio-temporal potential generator. Optics express 26, 29906– 29915 (2018).
28. Albay, J. A. C., Zhou, Z.-y., Chang, C.-h. & Jun, Y. Shift a laser beam back and forth to exchange heat and work in thermodynamics. Sci. Rep. 11, 4394. https://doi.org/10.1038/s41598-021-83824-7http://www.nature.com/ articles/s41598-021-83824-7 (2021).
29. Uffink, J. & Van Lith, J. Thermodynamic uncertainty relations. Foundations of physics 29, 655–692 (1999).
30. Barato, A. C. & Seifert, U. Thermodynamic uncertainty relation for biomolec- ular processes. Physical review letters 114, 158101 (2015).
31. Stokes, G. On the effect of internal friction of fluids on the motion of pendulums. Trans. Camb. phi1. S0c 9, 106 (1850).
32. Boltzmann, L. Vorlesungen über Gastheorie: Th. Theorie van der Waals’; Gase mit zusammengesetzten Molekülen; Gasdissociation; Schlussbemerkungen (JA Barth, 1898).
33. Gibbs, J. W. Elementary principles in statistical mechanics (Charles Scribner’s Sons, 1902).
34. Sekimoto, K. Langevin equation and thermodynamics. Progress of Theoretical Physics Supplement 130, 17–27 (1998).
35. Sekimoto, K. Stochastic energetics (Springer, 2010).
36. Seifert, U. Stochastic thermodynamics, fluctuation theorems and molecular ma- chines. Reports on progress in physics. Physical Society (Great Britain) 75, 126001. http://www.ncbi.nlm.nih.gov/pubmed/23168354 (2012).
37. Evans, D. J., Cohen, E. G. D. & Morriss, G. P. Probability of second law viola- tions in shearing steady states. Physical review letters 71, 2401 (1993).
38. Pietzonka, P. & Seifert, U. Universal Trade-Off between Power, Efficiency, and Constancy in Steady-State Heat Engines. Physical Review Letters 120, 190602. https://doi.org/10.1103/PhysRevLett.120.190602 (2018).
39. Li, J., Horowitz, J. M., Gingrich, T. R. & Fakhri, N. Quantifying dissipation using fluctuating currents. Nature Communications 10, 1666. http://www. nature.com/articles/s41467-019-09631-x (2019).
40. Jun, Y. & Bechhoefer, J. Virtual potentials for feedback traps. Physical Review E 86, 061106 (2012).
41. Kumar, A. & Bechhoefer, J. Optical feedback tweezers in Optical Trapping and Optical Micromanipulation XV 10723 (2018), 107232J.
42. Cohen, A. E. Control of Nanoparticles with Arbitrary Two-Dimensional Force Fields. Phys. Rev. Lett. 94, 118102. https://link.aps.org/doi/10.1103/ PhysRevLett.94.118102 (11 2005).
43. Allersma, M. W., Gittes, F., deCastro, M. J., Stewart, R. J. & Schmidt, C. F. Two-dimensional tracking of ncd motility by back focal plane interferometry. Biophysical journal 74, 1074–1085 (1998).
44. Polettini, M. & Esposito, M. Carnot efficiency at divergent power output. EPL
(Europhysics Letters) 118, 40003 (2017).
45. Krishnamurthy, S., Ghosh, S., Chatterji, D., Ganapathy, R. & Sood, A. K. A micrometre-sized heat engine operating between bacterial reservoirs. Nature Physics 12, 1134–1138. issn: 17452481 (2016).
46. Zakine, R., Solon, A., Gingrich, T. & van Wijland, F. Stochastic Stirling Engine Operating in Contact with Active Baths. Entropy 19, 193. http://www.mdpi. com/1099-4300/19/5/193 (2017).
47. Holubec, V., Steffenoni, S., Falasco, G. & Kroy, K. Active Brownian heat engines. Physical Review Research 2, 043262. https://link.aps.org/doi/10.1103/ PhysRevResearch.2.043262 (2020).
48. Jung, P. & Hänggi, P. Dynamical systems: a unified colored-noise approxima- tion. Physical review A 35, 4464 (1987).
49. Uhlenbeck, G. E. & Ornstein, L. S. On the Theory of the Brownian Motion. Phys. Rev. 36, 823–841. https://link.aps.org/doi/10.1103/PhysRev.36.823 (5 1930).
指導教授 田溶根(Yonggun Jun) 審核日期 2021-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明