博碩士論文 108226012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.15.26.108
姓名 柯景瀚(Jing-Han Ke)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 不同聲音或照明情境下室內靜態工作之專注程度指標開發
(Development of concentration index for indoor static work with different sound or lighting situation)
相關論文
★ 以GATE模型及系統矩陣演算法重建SPECT螺旋影像★ LED檯燈視覺舒適度研究
★ 表面電漿共振系統之相位擷取與分析★ 人眼眼球模型與視覺表現之模擬分析研究
★ 白光LED之視覺生理效應評估★ 不同色溫螢光燈用於辦公室照明之視覺效應研究
★ 表面電漿共振儀之動態相位偵測技術 與微量生物分子檢測應用★ 二次通過成像架構量測人眼的光學系統品質
★ 週期性奈米金屬結構對拉曼散射訊號增強之研究★ 日眩光要因分析研究
★ 非球面檢測之迭代相移干涉與子孔徑相位接合演算法開發★ 應用可容忍隨機位移之相移干涉術於相位式表面電漿共振系統之穩定度增進
★ 以偵測任務及系統效能評估找尋多針孔微單光子放射電腦斷層掃描系統之最佳化配置★ 結合表面電漿共振及溫度控制於免疫球蛋白鍵結之檢測分析
★ 以二次通過成像量測架構及降低誤差迭代演算法重建人眼之點擴散函數★ 多陽極光電倍增管閃爍相機之訊號讀出系統與高效最大可能性位置估算演算法開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-1-1以後開放)
摘要(中) 本研究以模擬辦公室內環境為實驗空間,分別分析在「噪音環境」下 進行專注度遊戲與在「不同晝夜節律刺激值的照明環境」下進行閱讀測驗 之腦波資訊,進一步探討噪音的干擾與照明情境中不同晝夜節律刺激值 (Circadian Stimulus, CS)的變化,對受試者的專注度有何影響。本研究將利 用先前研究團隊原有的實驗設計所收集的腦波資料,來定義出新的客觀專 注度相關指標,將該指標進一步轉換為專注度成績,分別探討工作與休息 時之專注度成績差異。
在噪音環境影響專注度的實驗中,使用到筆記型電腦讓受試者進行記 憶力相關的專注度遊戲、三件式音箱播放工地噪音模擬施工之噪音情境、 Neurosky 腦波儀負責量測受試者受到噪音干擾情境下玩遊戲之腦波數據。 在不同晝夜節律刺激值照明環境影響專注度的實驗中使用到光譜可調式光 源箱設計不同色溫或不同晝夜節律刺激值之照明環境,藉此來對受試者的 生心理產生影響並提升精神狀況、實驗中的閱讀測驗內容為歷年指考考 題、Neurosky 腦波儀為負責記錄受試者腦波數據,並利用希爾伯特-黃轉 換(Hilbert-Huang transform, HHT)執行進一步主客觀數據分析,以此來建立 照明人因評估。
耳機型腦波儀記錄受試者於不同實驗情境下的腦波訊號,利用 MATLAB 軟體進行數據分析,其中包含希爾伯特-黃轉換、機率密度函數 (Probability density function, PDF)以及接收者操作特徵曲線(Receiver operating characteristic curve, ROC curve)、由接收者操作特徵曲線計算曲線
vi
下面積(Area under the curve, AUC)當作客觀指標之一,除了使用接收者操 作特徵曲線進行分析外,也使用經由希爾伯特-黃轉換後所得之不同頻段的 頻帶功率作為特徵值,以支持向量機(Support vector machine, SVM)進行專 注與休息狀態之分類。
研究結果顯示在本論文中所開發之專注度相關指標能夠有效率的區分 不同環境中受試者的專注與休息狀態,受試者們在專注與休息狀態下之專 注度成績經由成對 t 檢定有著顯著的差異;在有無環境噪音之實驗中並非 所有受試者都受噪音影響;在相同色溫而 CS 值為 0.25 、 0.35 、 0.45 的 照明環境中進行閱讀測驗,專注度成績最高之情境為 CS 值為 0.45 時;而 在同 CS 值不同色溫的照明環境中進行閱讀測驗,受試者的專注度成績沒 有顯著的差異。
摘要(英) In this study, we use a simulated office environment as the experimental space, and analyze the brainwave signals of the memory-related games under "different sound situations" and of the reading tests under "different lighting situations". The aim is to explore the interference of different sounds or different circadian stimulus (CS) of the lighting situations on the concentration of participants. We utilize the experimental design of previous studies in our research group and define a new concentration index, which will be converted into the concentration score for comparing the concentration levels of the working and resting states.
In the experiment of "different sound situations", we use a laptop for participants to play memory-related games, there-piece speakers to play prerecorded noises of a construction site, and a Neurosky brainwave measuring device to acquire the brainwave data of participants. In the experiment of "different lighting situations", two spectrum adjustable light sources are used to design the lighting situations with different correlated color temperature (CCT) or CS. The questions in the reading tests are from the college entrance examinations of the past years. The Neurosky device is again responsible for measuring the brainwave data of participants.
The recorded brainwave signals undergo several processes in the MATLAB environment, including Hilbert-Huang transform (HHT), probability density function (PDF), receiver operating characteristic curve (ROC curve), and finally the area under the curve (AUC) as one of the objective index. In addition to
viii
using the ROC curve for data analysis, we also use the support vector machine (SVM) for binary classifications of the working and resting states.
The results show that the concentration index developed in this study can effectively distinguish the concentration and resting states of participants in different situations. The concentration scores of participants in the attentive and resting states have a significant difference by the paired t test. In the sound experiment, not all participants are affected by the noise. In the lighting experiment with the same CCT, among the tested CS values of 0.25, 0.35, and 0.45, the participants have the highest average concentration score when the CS value is 0.45. In the lighting experiment with the same CS but different CCTs, the concentration scores of participants have no significant differences between lighting situations.
關鍵字(中) ★ 腦電圖
★ 經驗模態分解法
★ 希爾伯特轉換
★ 機率密度函數
★ 接收者操作特徵曲線
★ 專注度指標
關鍵字(英) ★ EEG
★ empirical mode decomposition
★ Hilbert transform
★ probability density function
★ receiver operating characteristic curve
★ concentration index
論文目次 摘要 vi
Abstract viii
致謝 x
目錄 xii
圖目錄 xv
表目錄 xvii
第一章 緒論 1
1-1 研究背景與動機 1
1-2 研究目的 2
1-3 論文架構 2
第二章 文獻探討 4
2-1 環境噪音對生理影響 4
2-2 照明對生理的影響 5
2-2-1 非視覺系統 6
2-2-2 晝夜節律刺激值 9
2-3 生理回饋與腦波 11
2-3-1 腦電圖 12
2-3-2 腦電位量測 14
2-3-3 腦波資訊分析 18
第三章 研究方法與實驗步驟 19
3-1 實驗設計 20
3-1-1 專注力前測與視力檢查 22
3-1-2 實驗一 噪音環境下的專注度影響之實驗 24
3-1-3 實驗二 不同晝夜節律刺激值的專注度影響之實驗 24
3-1-4 實驗三 不同色溫的專注度影響之實驗 26
3-2 實驗相關設備介紹 27
3-2-1 KINYO 三件式音響設備 27
3-2-2 光譜可調式照明燈箱 28
3-2-3 色彩照度計 29
3-2-4 視力檢查儀 30
3-2-5 腦波儀 31
3-3 專注度實驗之環境配置 32
3-3-1 實驗一 噪音實驗環境配置 32
3-3-2 實驗二 照明實驗環境配置 33
3-3-3 實驗三 照明實驗環境配置 34
3-4 專注度實驗流程 35
3-4-1 噪音實驗之實驗流程 35
3-4-2 照明實驗之實驗流程 36
3-5 專注度實驗內容 37
3-5-1 噪音環境專注度實驗內容 37
3-5-2 照明環境專注度實驗內容 38
3-6 實驗資料分析 40
3-6-1 希爾伯特-黃轉換(Hilbert – Huang Transform, HHT) 40
3-6-2 經驗模態分解法 (Empirical Mode Decomposition, EMD) 41
3-6-3 希爾伯特轉換(Hilbert Transform, HT) 44
3-6-4 頻帶功率(Band Power) 47
3-6-5 接收者操作特徵曲線(Receiver operating characteristic curve) 48
3-6-6 支持向量機(Support Vector Machine, SVM) 51
3-6-7 交叉驗證(Cross validation) 55
3-6-8 Tukey’s fences 56
第四章 實驗數據分析流程與結果 58
4-1 數據分析流程 58
4-1-1 數據特徵萃取 58
4-1-2 特徵篩選 63
4-1-3 專注度成績 64
4-2 數據分析結果 64
4-2-1 實驗一 不同環境音對專注度影響實驗 64
4-2-2 實驗二 不同 CS 值對專注度影響實驗 86
4-2-3 實驗三 不同色溫對專注度影響之實驗 99
第五章 實驗結果討論 110
5-1 實驗一 不同環境音對專注度影響實驗結果討論 110
5-2 實驗二 不同 CS 值之照明情境對專注度影響實驗結果討論 118
5-3 實驗三 不同色溫對專注度影響實驗結果討論 127
第六章 結論與未來展望 135
6-1 結論 135
6-2 未來展望 137
參考文獻 138
附錄一 中文閱讀測驗內容範例 142
附錄二 主觀評估情境體驗問卷 145
附錄三 臺灣大學研究倫理審查核可證明書 147
參考文獻 [1] S. Nakamura, M. Senoh, and T. Mukai. P-GaN/N-InGaN/N-GaN double- heterostructure blue-light-emitting diodes. Japanese Journal of Applied Physics, 32(Part 2, No.1A/B):L8–L11, 1993.
[2] H. R. Taylor et al. The long-term effects of visible light on the eye. Archives of Ophthalmology, 110(1):99–104, 1992.
[3] G. Tosini, I. Ferguson, and K. Tsubota. Effects of blue light on the circadian system and eye physiology. Molecular Vision, 22:61–72, 2016.
[4] W. J. M. van Bommel and G. J. van den Beld. Lighting for work: a review of visual and biological effects. Lighting Research and Technology, 36(4):255– 266, 2004.
[5] Y. B. Shin et al. The effect on emotions and brain activity by the di- rect/indirect lighting in the residential environment. Neuroscience Letters, 584(1):28–32, 2015.
[6] S. Cohen, G. W. Evans, D. S. Krantz, D. Stokols. Physiological, motivational, and cognitive effects of aircraft noise on children: moving from the laboratory to the field. American Psychologist, 35(3), p. 231, 1980.
[7] E. Ratcliffe, B. Gatersleben, P. T. Sowden. Bird sounds and their contributions to perceived attention restoration and stress recovery. Journal of Environmental Psychology, 36, pp. 221-228, 2013.
[8] CNS 12112 中華民國國家標準. 室內工作場所照明. 經濟部標準檢驗局, 2012.
[9] Koninklijke Philips Electronics N.V., Feel good, learn better with SchoolVision, 2011.
[10] M. S. Mott et al. Illuminating the effects of dynamic lighting on student learning. SAGE Open, 2, 2012.
[11] I. Hirotake et al. Intellectual productivity under task ambient lighting. Lighting Research and Technology, 50(2), 2016.
[12] W. J. M. van Bommel. Non-visual biological effect of lighting and the practical meaning for lighting for work. Applied Ergonomics, 37(4):461– 466, 2006.
[13] W. J. M. van Bommel and G. J. van den Beld. Lighting for work: a review of visual and biological effects. Lighting Research and Technology, 36(4):255– 266, 2004.
[14] J. Y. Shin et al. Analysis of the effect on attention and relaxation level by correlated color temperature and illuminance of LED lighting using EEG signal. Journal of the Korean Institute of IIIuminating and Electrical Instal- lation Engineers, 27(5):9–17, 2013.
[15] D. M. Berson, F. A. Dunn, and M. Takao. Phototransduction by retinal gan- glion cells that set the circadian clock. Science, 295(5557):1070–1073, 2002.
[16] D. C. Fernandez et al. Light Affects Mood and Learning through Distinct Retina-Brain Pathways. Cell, 175(1):71–84.e18, 2018.
[17] P. Khademagha et al. Implementing non-image-forming effects of light in the built environment: A review on what we need. Building and Environment, 108(1):263–272, 2016.
[18] LumosTech. The science behind adjusting your circadian rhythm with light. Source: https://reurl.cc/g7qE3b.
[19] C. Lok. Vision science: Seeing without seeing. Nature, 469:284–285, 2011.
[20] C. S. Pittendrigh. On temperature independence in the clock system controlling emergence time in drosophila. Proceedings of the National Academy of Sciences of the United States of America vol. 40,10 (1954): 1018-29. doi:10.1073/pnas.40.10.1018
[21] I. Provencio, G. Jiang, W. De Grip, W. Hayes, and M. Rollag. Melanopsin: an opsin in melanophores, brain, and eye. Proceedings of the National Academy of Sciences of the United States of America, 95(1): 340-345, 1998.
[22] M. S. Rea, M. G. Figueiro, J. D. Bullough, and A. Bierman. A model of phototransduction by the human circadian system. Brain Research Reviews, 50(2): 213-228, 2005.
[23] M. S. Rea, M. G. Figueiro, A. Bierman, and R. Hamner. Modelling the spectral sensitivity of the human circadian system. Lighting Research and Technology, 44(4): 386-396, 2012.
[24] CS calculator. Source: https://www.lrc.rpi.edu/cscalculator/
[25] M.S. Rea and M.G. Figueiro, Light as a circadian stimulus for architectural lighting, Lighting Research Center, Rensselaer Polytechnic Institute.
[26] 網路資料,取自: https://www.lrc.rpi.edu/healthyliving/#section-whatIsCircadianLighting
[27] S. Mack et al. Principles of Neural Science, Fifth Edition. Principles of Neural Science. McGraw-Hill Education, 2013.
[28] H.-H. Suzana. The human brain in numbers: a linearly scaled-up primate brain. Frontiers in Human Neuroscience, 3:31, 2009.
[29] L. F. Haas. Hans Berger (1873–1941), Richard Caton (1842–1926), and electroencephalography. Journal of Neurology, Neurosurgery and Psychia- try, 74(1):9–9, 2003.
[30] H. Marzbani, H. R. Marateb, and M. Mansourian. Methodological note: Neurofeedback: A comprehensive review on system design, methodology and clinical applications. Basic and Clinical Neuroscience Journal, 7:143– 158, 2016.
[31] B. McDermott et al. Gamma Band Neural Stimulation in Humans and the Promise of a New Modality to Prevent and Treat Alzheimer’s Disease. Journal of Alzheimer’s Disease, 65(2):363–392, 2018.
[32] Human EEG with prominent alpha rhythm. Source: https://reurl.cc/QdvOoZ.
[33] H. Marzbani, H. R. Marateb, and M. Mansourian. Methodological note: Neurofeedback: A comprehensive review on system design, methodology and clinical applications. Basic and Clinical Neuroscience Journal, 7:143– 158, 2016.
[34] International 10-20 system for EEG. Source: https://reurl.cc/lVxMOA.
[35] Reader’s Digest Editors. Can You Spot the Difference in These 10 Pictures? Source: https://reurl.cc/r88xnr.
[36] 胡毓堅,「照明光源的色溫及晝夜節律刺激值對室內靜態工作專注力之影響研究」,國立中央大學,碩士論文,民國 110 年。
[37] LEDCube. Source: http://www.thouslite.com/PRODUCTS/16.html.
[38] NeuroSky. MindWave Mobile: User Guide, 2015.
[39] MindWave mobile. Source: https://reurl.cc/1x5pWD.
[40] 蔡昀安,「不同環境音下之腦電波特徵分析」,國立中央大學,碩士論文,民國 110 年。
[41] 網路資料,取自:https://www.tcte.edu.tw/down_exam.php
[42] 網路資料,取自:https://www.ceec.edu.tw/
[43] Mr. Opengate. Time Series Analysis - Introduction to Stationary Time Series. Source: https://reurl.cc/ZO6zo3.
[44] 陳佑榮,「應用希爾伯特黃轉換以C語言環境開發腦機介面訊號處理」, 國立中央大學,碩士論文,民國 104 年。
[45] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, ... & H. H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1971), pp. 903-995, 1998.
[46] F. Lotte, M. Congedo, A. Lecuyer, F. Lamarche, and B. Arnaldi, A review of classification algorithms for EEG-based brain-computer interfaces, Journal of Neural Engineering, 4(2):R1-R13, 2007.
[47] N. C. ristianini, & J. Shawe-Taylor, An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, 2000.
[48] F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, & B. Arnaldi, A review of classification algorithms for EEG-based brain–computer interfaces. Journal of Neural Engineering, 4(2), R1, 2007.
[49] C.-C. Chang and C.-J. Lin, LIBSVM: a library for support vector machines, ACM Transactions on Intelligent Systems and Technology, 2(3):27, 2011. Software available at: http://www.csie.ntu.edu.tw/~cjlin/libsvm
[50] G. Kimeldorf and G. Wahba, Some results on Tchebycheffian spline functions, Journal of Mathematical Analysis and Applications, 33(1):82-95, 1971.
[51] C. C. Chang, & C. J. Lin, LIBSVM: a library for support vector machines. ACM transactions on intelligent systems and technology (TIST), 2(3), pp. 1-27, 2011.
[52] International 10-20 system for EEG. from Wikipedia
[53] D. C. Hoaglin, B. Iglewicz, & J. W. Tukey, Performance of some resistant rules for outlier labeling. Journal of the American Statistical Association, 81(396), pp. 991-999, 1986.
[54] C. J. Peng, Y. C. Chen, C. C. Chen, S. J. Chen, B. Cagneau, L. Chassagne. An EEG‐Based Attentiveness Recognition System Using Hilbert–Huang Transform and Support Vector Machine, Journal of Medical and Biological Engineering, 2019
[55] R. Wang, Y. Wang, C. Luo. EEG-based Real-time Drowsiness Detection using Hilbert-Huang Transform. Institute of VLSI Design, 2015 IEEE
[56] V. Ganganwar. An overview of classification algorithms for imbalanced datasets, International Journal of Emerging Technology and Advanced Engineering, ISSN 2250-2459, Volume 2, Issue 4, April 2012
指導教授 陳怡君(Yi-Chun Chen) 審核日期 2022-1-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明