博碩士論文 108229007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:95 、訪客IP:3.147.61.218
姓名 賴宣庭(Hsuan-Ting Lai)  查詢紙本館藏   畢業系所 天文研究所
論文名稱 在亞可夫斯基作用下近地小行星的動力演化和半衰期
(Dynamical lifetime and evolution of Near-Earth Objects (NEOs) under the Yarkovsky e ffect)
相關論文
★ 土衛六「泰坦」離子球層的化學-動力學模型★ KBOs星體碰撞與生命及行星大氣起源
★ 行星狀星雲形態之多光譜波段觀測★ 木衛一埃歐鈉雲噴流之結構與時間變化
★ 早期太陽系系統中KBOs的形成與碰撞演化★ 彗星2001A2 (LINEAR)的光度觀測
★ SDSS之RR Lyrae候選變星之確認觀測★ 銀河系核心及盤面的隨機恆星形成歷史
★ 宇宙射線中的氦原子核能譜★ 小行星對於地球原始海水的貢獻
★ 行星狀星雲Hα結構之分析★ 在星系團中的相對論性電子和SZ效應
★ 重力透鏡和交互作用星系的資料探勘★ 在疏散星團中尋找系外行星與變星
★ 原恆星吸積盤動態模擬與氣體固態粒子作用初步探討★ 大型EKBO(Quaoar, Ixion, 2004DW)的自轉週期和表面顏色的測量
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近地小行星的特徵在於它的繞行太陽公轉的軌道會和地球的公轉軌道會有交錯且接近地球,因此具有撞擊地球的危險性。根據小行星的軌道性質,可以細分成4個子分類:阿提拉Atira (1.017 < 近日距q < 1.3 AU), 阿登Aten (半長軸 a < 1.0 AU, 遠日距 Q > 0.983 AU), 阿波羅 Apollo (半長軸 a > 1.0 AU, 近日距 q < 1.017 AU), 阿莫Amor (0.718 < 遠日距Q < 0.983 AU)。在2020年1月4月時,國立中央大學與國立清華大學參與Zwicky Transient Facility (ZTF)的曙光計畫(Twilight project)裡,觀測到位於金星軌道以內的小行星,2020 AV2,並且成為第一顆被觀測的凡提拉 Vatira (0.307 AU < 遠日距 Q < 0.718 AU)。這項發現使我們好奇這顆凡提拉Vatira的來源和演化,並有研究推測凡提拉 Vatira很有可能是從近地小行星中的阿提拉Atira遷移到金星軌道以內(Greenstreet et al, 2020; De la Fuente Marcos et al, 2020)。
在本研究中我們使用Mercury6數值模擬, 除了考慮現有行星的重力擾動外,也考慮了非重力效應的亞可夫斯基效應作用在小行星上。在長期的軌道演化中,根據小行星的物理和軌道特徵(例如小行星的大小、自轉傾角、熱慣量和半長軸等),亞可夫斯基效應造成的微小熱推力會影響小行星漸漸地向內或向外遷移。
從研究結果中,我們估計近地小行星短期和長期的半衰期分別為大約270萬年和2400萬年。而現有觀測到阿提拉Atira根據不同的自轉傾角(即0度、90度和180度),短期的半衰期分別大約為536萬年、824萬年和330萬年;而長期的半衰期為2510萬年、2870萬年和2410萬年。再者,我們發現凡提拉Vatira和阿提拉Atira兩者的軌道演化主要由行星的重力擾動所導致,非重力效應的亞可夫斯基效應造成的改變極其微小。接著從小行星的遷移機率機算中,根據不同的自轉傾角,阿提拉Atira遷移到凡提拉Vatira的機率分別為~3.87±0.263,~4.79±0.365和 ~6.14±0.149 %,。這代表著亞可夫斯基效應在小行星長期遷移演化中仍佔了某部分的影響。最後,我們在統計中考慮了2020AV2的光譜類型(S-型小行星)及絕對星等大小(15.625 < H < 17.175),並推估S-型的凡提拉Vatira現在大約有0.9 ± 0.8個,而阿提拉Atira大約有7.8 ± 4.47個,這個數量級和我們現今在JPL資料庫找到的數量很接近。
摘要(英) Asteroids having perihelion distance q < 1.3 AU and aphelion distance Q > 0.983 AU are classified as near-Earth objects (NEOs). And they are divided into different groups: Atira-class (1.017 < q < 1.3 AU), Aten-class (a < 1.0 AU, Q > 0.983 AU), Apollo-class (a > 1.0 AU, q < 1.017 AU), and Amor-class (0.718 < Q < 0.983 AU). There are 23 known Atiras with perihelion distance 1.017 < q < 1.3 AU. The first Vatira (its orbits totally inside Venus′ orbit), 2020 AV2, was discovered by the Twilight project of the Zwicky Transient Facility (ZTF) on January 4, 2020. A couple of orbital studies of the short-term orbital evolution of 2020 AV2 were performed soon after its discovery and indicated that 2020 AV2 was an Atira-class asteroid before entering the orbital region of the Vatira-class asteroid (de la Fuente Marcos et al, 2020; Greenstreet, 2020).
In this study, we performed three numerical simulations by using the Mercury6 N-body code with the hybrid symplectic integrator. We considered not only planetary gravitational perturbation but also the non-gravitational Yarkovsky effect. In addition, the tiny thermal force acting on asteroids characteristically by the Yarkovsky effect would cause gradual drift inward/outward in long-term evolution depending on the physical and orbital characteristics (e.g. an asteroid′s size, obliquity, thermal inertia, semi-major axis).
Our calculation shows that the NEOs have generally two dynamical populations, one short-lived and the other long-lived. The dynamical short-term half-lifetime is ~ 2.71 Myr, while the long-term half-lifetime is ~ 23.84 Myr. As for the Atria-class asteroids, the short-term half-lifetime for different values of the Yarkovsky force (i.e. obliquity of 0, 90, and 180 deg.) are ~ 5.36, 8.24, and 3.30 Myr, respectively, and the long-term part ~ 25.1, 28.7, and 24.1 Myr, respectively. The dynamical evolution of Atira-class and Vatira-class asteroids under the Yarkovsky force are similar because orbit evolution are dominated by planetary gravitational perturbation instead of non-gravitational thermal force. From the calculation of the transfer probabilities of Atira-class asteroids to Vatira-class asteroids are ~ 3.87±0.263, ~ 4.79±0.365, and ~ 6.14±0.149%, respectively. It suggests that the radiation force plays some role in the long-term evolution of this asteroid population. Finally, our statistical study implicates that there should be 7.8 ± 4.47 Atira-class asteroids and 0.9 ± 0.8 Vatira-asteroids of the S-type taxonomy and in the absolute magnitude range of 15.625 < H < 17.175. The values are close to the known number of the Vatira-class and Atira-class asteroids from the JPL database.
關鍵字(中) ★ 近地小行星
★ 數值模擬
★ 亞可夫斯基效應
★ 非重力效應
關鍵字(英) ★ Near-Earth objects
★ Numerical simulation
★ The Yarkovsky e ect
★ Non-gravitational force
論文目次 英文摘要Abstract in English ... i
中文摘要Abstract in Chinese ... iii
List of Figures ... vii
List of Tables ... ix
1 Introduction ... 1
1.1 Near-Earth Objects (NEOs) ... 1
1.2 The first observed Vatira-class asteroid ... 4
1.3 The Yarkovsky effect ... 7
2 Experimental Design ... 15
2.1 Numerical simulation ... 15
2.2 Run A: The dynamical evolution of Near-Earth Objects ... 16
2.3 Run B: The orbital evolution of the Atira-class asteroids under the Yarkovsky effect ... 17
2.4 Run C: The orbital evolution of the Vatira-class asteroids under the Yarkovsky effect ... 23
2.5 NEOs classification ... 23
3 Result ... 25
3.1 Dynamical evolution ... 25
3.1.1 NEOs (Run A) ... 25
3.1.2 Atira-class asteroids (Run B) ... 28
3.2 Dynamical half-lifeitime ... 31
3.3 The association between Vatira-class and Atira-class asteroids ... 34
4 Discussion ... 41
4.1 Orbital evolution of 2020 AV2 ... 41
4.2 Dynamical evolution of 2020 AV2 ... 46
4.3 The number of kilometer-sized inner Venus objects (IVOs) and Atiras from known NEOs population ... 48
5 Summary ... 51
Bibliography ... 53
Appendix ... 61
參考文獻 1. George Beekman. The nearly forgotten scientist ivan osipovich yarkovsky. Journal of the British Astronomical Association, 115:207, 2005.
2. Bryce T Bolin, Alessandro Morbidelli, and Kevin J Walsh. Size-dependent modi cation of asteroid family yarkovsky v-shapes. Astronomy & Astrophysics, 611:A82, 2018.
3. William F Bottke, David Vokrouhlicky, Kevin J Walsh, Marco Delbo, Patrick Michel, Dante S Lauretta, Humberto Campins, Harold C Connolly Jr, Daniel J Scheeres, and Steven R Chelsey. In search of the source of asteroid (101955) bennu: applications of the stochastic yorp model. Icarus, 247:191-217, 2015.
4. William Frederick Bottke. Asteroids III. University of Arizona Press, 2002.
5. William F Bottke Jr, David Vokrouhlicky, David P Rubincam, and David Nesvorny. The yarkovsky and yorp effects: Implications for asteroid dynamics. Annu. Rev. Earth Planet. Sci., 34:157-191, 2006.
6. E Bowell, B Hapke, D Domingue, K Lumme, J Peltoniemi, and A Harris. Asteroids ii, ed. r. binzel, t. gehrels, & m. matthews, 1989.
7. J. E. Chambers. A hybrid symplectic integrator that permits close encounters between massive bodies. MNRAS, 304(4):793-799, April 1999. doi: 10.1046/j.1365-8711.1999. 02379.x.
8. Steven R Chesley, Davide Farnocchia, Michael C Nolan, David Vokrouhlicky, Paul W Chodas, Andrea Milani, Federica Spoto, Benjamin Rozitis, Lance AM Benner, William F Bottke, et al. Orbit and bulk density of the osiris-rex target asteroid (101955) bennu. Icarus, 235:5-22, 2014.
9. Marco Delbo, Alan W Harris, Richard P Binzel, Petr Pravec, and John K Davies. Keck observations of near-earth asteroids in the thermal infrared. Icarus, 166(1):116-130, 2003.
10. Aldo Dell′Oro, AlanWHarris, Stefano Mottola, Michael Mueller, et al. Thermal inertia of near-earth asteroids and implications for the magnitude of the yarkovsky effect. Icarus, 190(1):236-249, 2007.
11. C de la Fuente Marcos and R de la Fuente Marcos. On the orbital evolution of 2020 AV2, the rst asteroid ever observed to go around the Sun inside the orbit of Venus. Monthly Notices of the Royal Astronomical Society: Letters, 494(1):L6-L10, 02 2020. ISSN 1745-3925. doi: 10.1093/mnrasl/slaa027. URL https://doi.org/10.1093/mnrasl/slaa027.
12. N Wyn Evans and Serge Tabachnik. Possible long-lived asteroid belts in the inner solar system. Nature, 399(6731):41-43, 1999.
13. Paolo Farinella, David Vokrouhlicky, and William K Hartmann. Meteorite delivery via yarkovsky orbital drift. Icarus, 132(2):378-387, 1998.
14. Brett J Gladman, Fabbio Migliorini, Alessandro Morbidelli, Vincenzo Zappala, Patrick Michel, Alberto Cellino, Christiane Froeschle, Harold F Levison, Mark Bailey, and Martin Duncan. Dynamical lifetimes of objects injected into asteroid belt resonances. Science, 277(5323):197-201, 1997.
15. Mikael Granvik, Alessandro Morbidelli, Robert Jedicke, Bryce Bolin, William F Bottke, Edward Beshore, David Vokrouhlicky, David Nesvorny, and Patrick Michel. Debiased orbit and absolute-magnitude distributions for near-earth objects. Icarus, 312:181-207, 2018.
16. Sarah Greenstreet. Orbital dynamics of 2020 av2: the rst vatira asteroid. Monthly Notices of the Royal Astronomical Society: Letters, 493(1):L129-L131, Feb 2020. ISSN 1745-3933. doi: 10.1093/mnrasl/slaa025. URL http://dx.doi.org/10.1093/mnrasl/slaa025.
17. Sarah Greenstreet, Henry Ngo, and Brett Gladman. The orbital distribution of near-earth objects inside earth′s orbit. Icarus, 217(1):355-366, 2012.
18. J Hanus, M Delbo, D Vokrouhlicky, P Pravec, JP Emery, V Al-Lagoa, B Bolin, M Devog ele, R Dyvig, A Galad, et al. Near-earth asteroid (3200) phaethon: haracterization of its orbit, spin state, and thermophysical parameters. Astronomy & Astrophysics, 592: A34, 2016.
19. Josef Hanus, Marco Delbo, Josef Durech, and Victor Al-Lagoa. Thermophysical modeling of asteroids from wise thermal infrared data{signi cance of the shape model and the pole orientation uncertainties. Icarus, 256:101-116, 2015.
20. Jonathan Horner, NW Evans, and ME Bailey. Simulations of the population of centaurs-i. the bulk statistics. Monthly Notices of the Royal Astronomical Society, 354(3):798-810, 2004.
21. W-H Ip, BT Bolin, FJ Masci, Q Ye, EA Kramer, G Helou, T Ahumada, MW Coughlin, MJ Graham, R Walters, et al. A kilometer-scale asteroid inside venus′s orbit. arXiv preprint arXiv:2009.04125, 2020.
22. Yoshihide Kozai. Secular perturbations of asteroids with high inclination and eccentricity. The Astronomical Journal, 67:591-598, 1962.
23. PL Lamy, L Jorda, S Fornasier, O Groussin, MA Barucci, J Carvano, E Dotto, M Fulchignoni, and I Toth. Asteroid 2867 steins-iii. spitzer space telescope observations, size determination, and thermal properties. Astronomy & Astrophysics, 487(3): 1187-1193, 2008.
24. Michael L Lidov. The evolution of orbits of arti cial satellites of planets under the action of gravitational perturbations of external bodies. Planetary and Space Science, 9(10): 719-759, 1962.
25. Chien-Hsien Lin, Wing-Huen Ip, Zhong-Yi Lin, Yu-Chi Cheng, Hsing-Wen Lin, and Chan-Kao Chang. Photometric survey and taxonomic identi cations of 92 near-earth asteroids.Planetary and Space Science, 152:116-135, 2018.
26. F Marchis, JE Enriquez, JP Emery, M Mueller, M Baek, J Pollock, M Assa n, R Vieira Martins, J Berthier, F Vachier, et al. Multiple asteroid systems: Dimensions and thermal properties from spitzer space telescope and ground-based observations. Icarus, 221(2):1130-1161, 2012.
27. Joseph R Masiero, AK Mainzer, T Grav, JM Bauer, RM Cutri, J Dailey, PRM Eisenhardt, RS McMillan, TB Spahr, MF Skrutskie, et al. Main belt asteroids with wise/neowise.i. preliminary albedos and diameters. The Astrophysical Journal, 741(2):68, 2011.
28. Joseph R Masiero, Francesca E DeMeo, Toshihiro Kasuga, and Alex H Parker. Asteroid family physical properties. Asteroids IV, pages 323{340, 2015.
29. A Morbidelli, R Gonczi, Ch Froeschle, and P Farinella. Delivery of meteorites through the nu6 secular resonance. Astronomy and Astrophysics, 282:955-979, 1994.
30. Alessandro Morbidelli, WF Bottke, Ch Froeschle, P Michel, et al. Origin and evolution of near-earth objects. Asteroids iii, 409, 2002.
31. TG Muller, J Durech, S Hasegawa, M Abe, K Kawakami, T Kasuga, D Kinoshita, D Kuroda, S Urakawa, S Okumura, et al. Thermo-physical properties of 162173 (1999ju3), a potential yby and rendezvous target for interplanetary missions. Astronomy & Astrophysics, 525:A145, 2011.
32. Shantanu P Naidu, Jean-Luc Margot, Patrick A Taylor, Michael C Nolan, Michael W Busch, Lance AM Benner, Marina Brozovic, Jon D Giorgini, Joseph S Jao, and Chris Magri. Radar imaging and characterization of the binary near-earth asteroid (185851) 2000 dp107. The Astronomical Journal, 150(2):54, 2015.
33. VB Neiman, EM Romanov, and VM Chernov. Ivan osipovich yarkovsky. Earth Univ, 4:63-64, 1965.
34. Ernst Julius Opik. Collision probabilities with the planets and the distribution of interplanetary matter. In Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences, volume 54, pages 165-199. JSTOR, 1951.
35. Charles Peterson. A source mechanism for meteorites controlled by the yarkovsky effect. Icarus, 29(1):91-111, 1976.
36. M Popescu, J de Leon, C de la Fuente Marcos, O Vaduvescu, R de la Fuente Marcos, J Licandro, V Pinter, E Tatsumi, O Zamora, C Farina, et al. Physical characterization
of 2020 av2, the first known asteroid orbiting inside venus orbit. Monthly Notices of the Royal Astronomical Society, 496(3):3572-3581, 2020.
37. VV Radzievskii. A mechanism for the disintegration of asteroids and meteorites. Astronomicheskii Zhurnal, 29:162-170, 1952.
38. AO Ribeiro, F Roig, MN De Pra, JM Carvano, and SR DeSouza. Dynamical study of the atira group of asteroids. Monthly Notices of the Royal Astronomical Society, 458 (4):4471-4476, 2016.
39. Ben Rozitis and Simon F Green. Physical characterisation of near-earth asteroid (1620) geographos-reconciling radar and thermal-infrared observations. Astronomy & Astrophysics, 568:A43, 2014.
40. David Parry Rubincam. Asteroid orbit evolution due to thermal drag. Journal of Geophysical Research: Planets, 100(E1):1585-1594, 1995.
41. David Parry Rubincam. Yarkovsky thermal drag on small asteroids and mars-earth delivery. Journal of Geophysical Research: Planets, 103(E1):1725-1732, 1998.
42. David Parry Rubincam. Radiative spin-up and spin-down of small asteroids. Icarus, 148 (1):2-11, 2000.
43. Federica Spoto, Andrea Milani, and Zoran Knezevic. Asteroid family ages. Icarus, 257: 275-289, 2015.
44. Paolo Tanga et al. Thermal inertia of main belt asteroids smaller than 100 km from iras data. Planetary and Space Science, 57(2):259-265, 2009.
45. Cristina A Thomas, David E Trilling, JP Emery, M Mueller, JL Hora, LAM Benner, B Bhattacharya, WF Bottke, S Chesley, M Delbo, et al. Exploreneos. v. average albedo by taxonomic complex in the near-earth asteroid population. The Astronomical Journal, 142(3):85, 2011.
46. D Vokrouhlicky and WF Bottke. The yarkovsky thermal force on small asteroids and their fragments-choosing the right albedo. Astronomy & Astrophysics, 371(1):350-353, 2001.
47. D Vokrouhlicky and P Farinella. The yarkovsky seasonal e ect on asteroidal fragments: A nonlinearized theory for the plane-parallel case. The Astronomical Journal, 116(4):2032, 1998.
48. D Vokrouhlicky and P Farinella. The yarkovsky seasonal e ect on asteroidal fragments: A nonlinearized theory for spherical bodies. The Astronomical Journal, 118(6):3049, 1999.
49. David Vokrouhlicky and D Capek. Yorp-induced long-term evolution of the spin state of small asteroids and meteoroids: Rubincam′s approximation. Icarus, 159(2):449-467, 2002.
50. Hugo von Zeipel. Sur l′applicationdes series de m. lindstedt a l′etudedu mouvement des cometes periodiques. Astronomische Nachrichten, 183:345, 1910.
51. J Wisdom. Chaotic behavior near the 3/1 commensurability as a source of earth-crossing asteroids. Meteoritics, 18:422-423, 1983.
52. Stephen D Wolters, Ben Rozitis, Samuel R Duddy, Stephen C Lowry, Simon F Green, Colin Snodgrass, Olivier R Hainaut, and Paul Weissman. Physical characterization of low delta-v asteroid (175706) 1996 fg3. Monthly Notices of the Royal Astronomical Society, 418(2):1246-1257, 2011.
53. Yang-Bo Xu, Li-Yong Zhou, Christoph Lhotka, and Wing-Huen Ip. Asteroid migration due to the yarkovsky e ect and the distribution of the eos family. Monthly Notices of the Royal Astronomical Society, 493(1):1447-1460, 2020.
54. Quanzhi Ye, Frank J Masci, Wing-Huen Ip, Thomas A Prince, George Helou, Davide Farnocchia, Eric C Bellm, Richard Dekany, Matthew J Graham, Shrinivas R Kulkarni, et al. A twilight search for atiras, vatiras, and co-orbital asteroids: Preliminary results. The Astronomical Journal, 159(2):70, 2020.
55. Lei Zhou, Yang-Bo Xu, Li-Yong Zhou, Rudolf Dvorak, and Jian Li. Orbital stability of earth trojans. Astronomy & Astrophysics, 622:A97, 2019.
指導教授 葉永烜(Wing-Huen Ip) 審核日期 2021-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明