以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:22 、訪客IP:3.144.3.43
姓名 劉力維(Li-Wei Liu) 查詢紙本館藏 畢業系所 土木工程學系 論文名稱 建立砂性土的SPT-CPT關係式之新方法
(A New Approach to Constructing SPT-CPT Correlation for Sandy Soils)相關論文
★ 利用連續及非連續隨機場分析地層與參數變異性對液化潛能指數不確定性的影響 ★ 探討新增鑽孔位置與地層不確定性之關係 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 摘要
過去許多學者提出SPT - CPT 相關性方法,使工程師在利用不同的關係式求取現場參數更為方便。然而,這些關係式僅根據數據進回歸而得,並無力學上的依據。本文提出一種新方法,分別從現有的 SPT 與 CPT 力學公式中,選定一對相同的輸出的公式作相等,並推導出理論關係式。此理論關係式為建立SPT - CPT 相關性的前期知識,然後利用現地調查之SPT - CPT 數據對進行校準,最終產生新的關係式。
本文希望建立正規化SPT-N((N1)60,cs)及正規化CPT-qc(qt1N,cs)關係式可用於土壤液化評估上,因此對砂性土進行探討。首先,根據三個砂性土壤相關參數(反覆液化阻抗比、有效摩擦角及相對密度)公式,分別利用數值及解析方式得到基於力學性質的(N1)60,cs及正規化 qt1N,cs 之關係。繼之,利用大量相鄰很近的砂性土 SPT - CPT 數據對作為觀測資料,以最大似然估計(Maximum likelihood estimation, MLE)更新關係式,然後根據貝氏訊息準則(Bayesian information criterion, BIC)之加權平均組合三個關係式,最後提出的新(N1)60,cs – qt1N,cs 關係式,與現有關係式進行比較。摘要(英) Abstract
Many scholars proposed the correlations between the SPT-N and the CPT-qc, so that the engineers could obtain the in-situ soil parameters easily through different correlations. However, these correlations were based on the data driving without considering the mechanical-based model. This paper proposes a new approach that starts with a theoretical baseline derived from a selected pair of existing transformation models that use SPT and CPT, respectively, as the input for the same output. This theoretical baseline, considered a prior knowledge of the intended SPT-CPT correlation, is then calibrated with the collected data to yield the final correlation. We are focused on developing the correlation of the corrected clean sand equivalence of SPT-N ((N1)60,cs) value and CPT-qc (qt1N,cs) for sandy soil.
Firstly, this paper obtained three theoretical equivalence correlations of (N1)60,cs and qt1N,cs based on the equations of cyclic resistance ratio, effective friction angle, and relative density, respectively. To illustrate the proposed approach, we created a high-quality database from a large number of side-by-side SPT - CPT pairs. Then, the updated correlations could be obtained via the maximum likelihood estimation (MLE) that adjusted the coefficients of the correlations by observing the in-situ SPT - CPT pairs. Finally, the three (N1)60,cs – qt1N,cs correlation models
are combined through a weighted average process based on the Bayesian information criterion (BIC). The final (N1)60,cs – qt1N,cs correlation is then proposed, and a comparison with an existing model is made.關鍵字(中) ★ 標準貫入試驗
★ 圓錐貫入試驗
★ 砂性土
★ 反覆液化阻抗比
★ 有效摩擦角
★ 相對密度關鍵字(英) ★ Standard penetration test (SPT)
★ Cone penetration test (CPT)
★ Sandy soils
★ Liquefaction
★ Friction angle
★ Relative density論文目次 目錄
摘要 ...................................................................................................................................... V
ABSTRACT ....................................................................................................................... VI
目錄 ..................................................................................................................................... IX
圖目錄 ............................................................................................................................... XII
表目錄 .............................................................................................................................. XIII
第一章 緒論 ......................................................................................................................... 1
1-1 研究動機 .................................................................................................................... 1
1-2 研究目的 .................................................................................................................... 2
1-3 研究流程 .................................................................................................................... 3
第二章 文獻回顧 ................................................................................................................. 4
2-1 現地調查試驗 ............................................................................................................. 4
2-1-1 標準貫入試驗 ..................................................................................................... 4
2-1-2 圓錐貫入試驗 ..................................................................................................... 7
2-2 土壤行為類型指數 ................................................................................................... 10
2-3 循環液化阻抗比CRR 公式 ...................................................................................... 13
2-4 砂性土有效摩擦角公式 ............................................................................................ 18
2-5 砂性土相對密度公式 ................................................................................................ 20
X
2-6 SPT 與CPT 相關性 .................................................................................................. 22
2-6-1 SPT-N 與CPT-qc 相關性 ................................................................................... 22
2-6-2 SPT-N60 與CPT-qtN 相關性 ................................................................................ 25
2-6-3 SPT-N1,60cs 與CPT-qt1N,cs 相關性........................................................................ 26
2-7 最大似然估計法 ....................................................................................................... 28
2-5 貝氏訊息準則 ........................................................................................................... 29
第三章 研究區域與數據對篩選 ........................................................................................ 30
3-1 研究區域概況 ........................................................................................................... 30
3-2 建立砂性土SPT-N 與CPT-QC 數據對 ..................................................................... 32
3-2-1 砂性土數據對收集 ............................................................................................ 32
3-2-2 砂性土數據對篩選 ............................................................................................ 34
第四章 建立關係式之新方法 ............................................................................................ 37
4-1 基於SPT 與CPT 關係式之模型偏差因子 .............................................................. 38
4-2 基於循環液化阻抗比CRR 公式相等之關係式 ....................................................... 39
4-2-1 基於循環液化阻抗比CRR 之理論關係式 ....................................................... 39
4-2-2 利用最大似然估計法調整CRR 關係式 ........................................................... 43
4-3 基於砂性土有效摩擦角公式相等之關係式 ............................................................. 45
4-3-1 基於砂性土有效摩擦角之理論關係式 ............................................................. 45
XI
4-3-2 利用最大似然估計法調整有效摩擦角關係式 ................................................. 48
4-4 基於砂性土相對密度公式相等之關係式 ................................................................ 50
4-4-1 基於砂性土相對密度之理論關係式 ................................................................. 50
4-4-2 利用最大似然估計法調整相對密度關係式 ..................................................... 53
第五章 合成關係式及討論 ................................................................................................ 55
5-1 模型平均法 ............................................................................................................... 55
5-2 組合後的模型與三個相關性理論線比較 ................................................................ 59
5-3 與現有關係式的比較 ............................................................................................... 61
第六章 結論與建議 ............................................................................................................ 63
6-1 結論 .......................................................................................................................... 63
6-2 建議 .......................................................................................................................... 64
參考文獻 ............................................................................................................................. 65參考文獻 參考文獻
[1] Akca, N. (2003). Correlation of SPT-CPT data from the United Arab Emirates.
Engineering Geology, 67(3-4):219-231.
[2] Andrus, R.D., Piratheepan, P., Ellis, B.S., Zhang, J., and Juang, C.H. (2004). Comparing
liquefaction evaluation methods using penetration-VS relationships. Soil Dynamics and
Earthquake Engineering, 24:713-721.
[3] ASTM D 1586. Standard test method for Standard Penetration Test (SPT) and split-barrel
sampling of Soils. ASTM.
[4] ASTM D 5778-20. Standard test method for electronic friction cone and piezocone
penetration testing of soil. ASTM.
[5] Coduto, D. P. (1994). Foundation design: principles and practices, prentice hall, Englwood
Cliffs, N.J.
[6] Douglas, B. J., and Olsen, R. S. (1981). Soil classification using electric cone penetrometer.
Proceedings of cone penetration testing and experience, ASCE, St Louis, U.S.A., 209-277.
[7] Gelfand, A.E., and Dey, D.K. (1994). Bayesian Model Choice: Asymptotics and exact
calculations. Journal of the Royal Statistical Society, 56(3):501-514.
[8] Haque, Md.N., and Steward, E.J. (2020). Evaluation of pile setup phenomenon for driven
piles in Alabama. Geo-Congress 2020 GSP 315. 200-208.
[9] Hatananka, M., and Uchida, A. (1996). Empirical correlation between penetration
resistance and internal friction angle of sandy soils. Soil and foundation, 36(4):1-9.
66
[10] Hoeting, J.A., Raftery, A.E., and Madigan, D. (1999). Bayesian Simultaneous Variable
and Transformation Selection in Linear Regression. Department of Statistics Colorado
State University. Technical Report 9905.
[11] Idriss, I.M., and Boulanger, R.W. (2004). Semi-empirical procedures for evaluating
liquefaction potential during earthquakes. Proceedings of the 11th ICSDEE & 3rd ICEGE.
32-56.
[12] Jamiolkowski, M., Presti, D.C.F.L., and Manassero, M. (2001). Evaluation of relative
density and shear strength of sands from CPT and DMT. ASCE Geotechnical Special
Publication. 199:201-238.
[13] Jefferies, M.G., and Davies, M.P. (1993). Use of CPTu to estimate equivalent SPT N60.
Geotechnical Testing Journal, 16(4):458-468.
[14] Kass, R.E., and Raftery, E. (1995). Bayes factors. Journal of the American Statistical
Association, 90(430):773-795.
[15] Ku, C.S., Juang, C.H., and Ou, C.Y. (2010). Reliability of CPT Ic as an index for
mechanical behaviour classification of soils. Géotechnique, 60(11):861-875.
[16] Kulhawy, F. H., and Mayne, P.W. (1990). Manual on Estimating Soil Properties for
Foundation Design. Electric Power Research Institute, Palo Alto, California.
[17] Lu, Y.C., Liu L.W., Khoshnevisan, S., Ku, C.S., Juang, C.H., and Xiao, S. (2022). A new
approach to constructing SPT-CPT correlation for sandy soils. Georisk-Assessment and
Management of Risk for Engineered Systems and Geohazards. (under review)
67
[18] Madigan, D., and Rafter, A.E. (1994). Model selection and accounting for model
uncertainty in graphical models using Occam′s window. Journal of the American
Statistical Association, 89(428):1535-1546.
[19] Mahmud, Md. R. (2015). Liquefaction potentiality analysis of coastal deposits of
Bangladesh. Proceeding of university information technology & sciences. April 1st.
[20] Mayne, P.W. (2006). In-situ test calibrations for evaluating soil parameters. Overview
paper on in characterization and engineering properties of natural soils-proceedings of the
second international workshop on characterization and engineering properties of natural
soils: Taylor & Francis, 1601-1652.
[21] Mayne, P.W., Coop, M.R., Springman, S.M., Huang, A.B., and Zornberg, J.G. (2009).
Geomaterial behavior and testing. Proceedings of the 17th International Conference on Soil
Mechanics and Geotechnical Engineering. DOI:10.3233/978-1-60750-031-5-2777.
[22] Neath, A.A., and Cavanaugh, J.E. (2011). The Bayesian information criterion: background,
derivation and applications. WIREs Comput Stat, 4:199-203.
[23] Niazi, F.S., Mayne, P.W. (2013). Cone penetration test based direct methods for evaluating
static axial capacity of single piles. Geotechnical and Geological Engineering, 31:979-
1009.
[24] Robertson, P. K., Campanella, R. G., and Wightman, A. (1983). SPT-CPT correlations.
Journal of Geotechnical Engineering, 109(11):1449-1459.
68
[25] Robertson, P.K. (2009). Interpretation of cone penetration tests – a unified approach.
Canadian Geotechnical Journal, 46:1337-1355.
[26] Robertson, P.K. (2016). Cone penetration test (CPT)-based soil behaviour type (SBT)
classification system —an update. Canadian Geotechnical Journal, 53:1910-1927.
[27] Robertson, P.K., and Cabal, K.L. (2015). Standard test method for electronic friction cone
and piezocone penetration testing of soils. ASTM, D5778-20.
[28] Robertson, P.K., and Wride, C.E. (1998). Evaluating cyclic liquefaction potential using
the cone penetration test. Canadian Geotechnical Journal, 35:442-459.
[29] Rogers, J.D. (2006). Subsurface exploration using the standard penetration test and the
cone penetrometer test. Environmental and Engineering Geoscience, 12(2):161-179.
[30] Schneider, J. A., Randolph, M. F., Mayne, P. W., and Ramsey, N. R. (2008). Analysis of
factors influencing soil classification using normalized Piezocone tip resistance and pore
pressure parameters. Journal of Geotechnical and Geoenvironmental Engineering,
134(11):1569-1586.
[31] Seed, H.B., Tokimatsu, K., Harder, L.F., and Chung, R.M. (1985). Influence of SPT
procedures in soil liquefaction evaluations. Journal of Geological and Environmental
Engineering, 111(12):1425-1445.
[32] Shahri, A., Juhlin, C., and Malemir, A. (2014). A reliable correlation of SPT-CPT data for
southwest of Sweden. Electronic Journal of Geotechnical Engineering, 19:1013-1032.
69
[33] Youd, T.L., Idriss, I.M., Andrus, R.D., Arango, I., Castro, G., Christian, J.T, Dobry, R.,
Finn W.D.L., Harder, L.F. Jr, Hynes, M.E., Ishihara, K., Koester J.P., Liao, S.S.C.,
Marcuson, W.F III, Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson,
P.K., Seed, R.B.,and Stokoe, II K.H. (2001). Liquefaction resistance of soils : summary
report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of
liquefaction resistance of soils. Journal of Geotechnical & Geoenvironmental Engineering,
127(10):817-833.
[34] Yuen, K., Au, S.K., and Beck, J.L. (2004). Two-stage structural health monitoring
approach for phase I benchmark studies. Journal of Engineering Mechanics, 181:27-37.
[35] Zhang, J., Huang, H.W., Juang, C.H., and Su, W.W. (2014). Geotechnical reliability
analysis with limited data: Consideration of model selection uncertainty. Engineering
Geology, 181:27-37.指導教授 莊長賢 盧育辰(Charng-Hsein Juang Yu-Chen Lu) 審核日期 2022-1-25 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare