摘要(英) |
In this study, we conducted field surveys of debris flows at the Houyenshan of San Yi county, Miaoli, Taiwan, and conducted particle experiments analysis of runoff-induced debris flows in the large-scale mechanics laboratory of National Central University. The former recorded the flow progress of the debris flow events through image data filmed by cameras, and found that the average velocities at the front of the debris flows were between 0.4 m/s-1.1 m/s. We collected the rainfall data of the debris flows occurred from 2016 to 2021, and concluded that the effective accumulated rainfall (including antecedent rainfall) (R) and the accumulated rainfall (Re) of the rain field have a positive correlation with the flow distance (L) of the debris flows. The signals recorded by the three-dimensional geophones showed that the frequency range of runoff events are between 20 and 90 Hz; the frequency range of debris flood events are between 30 and 80 Hz; the frequency range of earthquake events are below 5 Hz. The latter experiments of loose bed explores the granular flow pattern and failure processes, granular flow motion characteristics, accumulation parameters after runoff failures, and the correlations with stream power. The differences between the slope and the discharge conditions of the experimental tilting flume will cause different flow patterns. When the loose bed is fluidized by runoff, the ability of water flow to entrain the loose bed will be stronger as the slope and the discharge increase. The surge of the granular flow shows an increasing trend during the flow process. |
參考文獻 |
[1] 行政院農業委員會水土保持局 (2017),「水土保持手冊」。
[2] 黃立政 (2004),「土石流災害防治概論」,全華科技圖書股份有限公司。
[3] 詹錢登 (2000),「土石流概論」,科技圖書股份有限公司。
[4] 陳文福、吳士杰、蔡明波 (2011),「匹亞桑溪集水區土石流事件之規模探討」,中華民國水土保持學報,43(3),311-320。
[5] 陳韋利、林政侑、林昭遠 (2014),「以逕流歷線建置土石流預警系統之研究」,中華民國水土保持學報,46(1),901-916。
[6] 黃清哲、孫坤池、陳潮億、尹孝元 (2007),「不同型態土石流地聲特性之實驗研究」, 38(4): 417-430。
[7] 周憲德、李璟芳、黃郅軒、張友龍 (2012),「礫石型溪溝崩塌及土石流監測與流動特徵分析」,中華民國力學學會第三十六屆全國力學會議。
[8] 周憲德、楊祥霖、李璟芳、黃郅軒 (2013),「火炎山土石流之流動型態與地聲特性分析」,中華民國水土保持學報,46(2),71-78。
[9] 葉智惠、黃清哲、連榮吉 (2008),「石塊運動產生地表震動及空中聲音訊號之研究」,中華民國水土保持學報,第 39 卷,第 4 期,頁 449-458。
[10] 李明熹 (2006),「土石流發生降雨警戒分析及其應用」,國立成功大學水利及海洋工程研究所,博士論文。
[11] 凌杰民 (2018),「不同渠床堆積形態下滲流引致土石流之歷程分析」,國立中央大學土木工程研究所,碩士論文。
[12] 陳威宏 (2017),「土石流現地監測與流動型態分析」,國立中央大學土木工程研究所,碩士論文。
[13] 彭楙鈞 (2019),「火炎山土石流現地監測及土石流粒徑分析」,國立中央大學土木工程研究所,碩士論文。
[14] 邱奕旭 (2020),「土石流現地監測與地聲頻譜分析」,國立中央大學土木工程研究所,碩士論文。
[15] 劉耀宇 (2016),「土石流現地監測與地聲試驗分析」,國立中央大學土木工程研究所,碩士論文。
[16] 蔡勝棠 (2018),「火炎山土石流之降雨特性及地貌演變分析」,國立中央大學土木工程研究所,碩士論文。
[17] 土石流防災資訊網-行政院農業委員會水土保持局。取自http://246.swcb.gov.tw
[18] Arattano M., and Marchi L. (2008),“System and Sensors for Debris flow Monitoring and Warning”, Sensors , pp. 2436-2452.
[19] Arnaud B. et al. (2013), “Continuous catchment-scale monitoring of geomorphic processes with a 2-D seismological array”, Earth Surface Vol. 118, No. 3, pp. 1956-1974.
[20] Arnaud B., Niels H., and Turowski J.M. (2016), “Seismic monitoring of torrential and fluvial processes”, Earth Surface Vol. 4, pp. 285-307.
[21] Arattano M., Coviello V., Abancó C., Hürlimann M. (2016), “Methods of Data Processing for Debris Flow Seismic Warning”, International Journal of Erosion Control Engineering Vol. 9, No. 3, pp. 114-121.
[22] Ching-Jer Huang, Hsiao-Yuen Yin,Chao-Yi Chen, Chih-Hui Yeh and Chin-Lun Wang (2007), “Ground vibrations produced by rock motions and debris flows”, Journal of Geophysical Research Vol. 112.
[23] Comiti F. et al. (2014), “A new monitoring station for debris flows in the European Alps: first observations in the Gadria basin”, Nat Hazards Vol.73, No. 3, pp. 1175-1198.
[24] Coviello, V. (2015), “Debris flow seismic monitoring and warning”, PhD Thesis, Politecnico di Torino, doi: 10.6092/polito/porto/2616887.
[25] Gregoretti C. (2000), “The initiation of debris flow at high slopes: experimental results”, Journal of Hydraulic Research, 38, pp. 83-88.
[26] Gregoretti C. and Dalla G. Fontana (2008), “The triggering of debris flow due to channel-bed failure in some alpine headwater basins of the Dolomites: analyses of critical runoff”, Hydrological Processes Vol. 22, pp. 2248-2263.
[27] Hürlimann M., Abancó C., Moya J., Vilajosana I. (2013), “Results and Experiences Gathered at the Rebaixader Debris-flow Monitoring Site, Central Pyrenees, Spain”, Landslides , pp. 939-953.
[28] Provost F., Hibert C., and Malet J.-P.,(2017), “Automatic classification of endogenous landslide seismicity using the Random Forest supervised classifier”, Geophysical Research Letters Vol. 44, pp. 113-120. |