博碩士論文 108322088 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:70 、訪客IP:18.118.20.77
姓名 葉庭宇(Ting-Yu Yeh)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 具擴展性之多屬性IoT RESTful服務資料管理解決方案
(A scalable multi-attribute data management solution for an IoT RESTful service)
相關論文
★ 物聯網制動功能之互操作性解決方案★ 地理網路爬蟲:具擴充及擴展性之地理網路資源爬行架構
★ TDR監測資訊平台之改善與 感測器觀測服務之建立★ 利用高解析衛星立體像對產製近岸水底地形
★ 整合oneM2M 及OGC SensorThings API 標準建立開放式物聯網架構★ 巨量物聯網資料之多重屬性索引架構
★ 高效率異質性時序資料表示法辨別系統★ A TOA-reflectance-based Spatial-temporal Image Fusion Method for Aerosol Optical Depth Retrieval
★ An Automatic Embedded Device Registration Procedure for the OGC SensorThings API★ 基於本體論與使用者興趣之個人化地理網路搜尋引擎
★ 利用本體論整合城市模型及物聯網開放式標準探討智慧城市之應用★ 運用無人機及影像套合法進行混凝土橋梁裂縫檢測
★ GeoRank: A Geospatial Web Ranking Algorithm for a GeoWeb Search Engine★ 應用高時空解析度遙測影像融合於海水覆蓋率之監測
★ LoRaWAN Positioning based on Time Difference of Arrival and Differential Correction★ 類神經網路逆向工程理解遙測資訊:以Landsat 8植被分類為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-1-1以後開放)
摘要(中) 物聯網(Internet of Things, IoT)由各種嵌入式裝置組成,持續生成大量的感測器觀測數據。然而,隨著物聯網技術近年的蓬勃發展,物聯網面臨嚴重的異質性問題,不同開發者設計各種專有的資料模型或服務協定,造成物聯網資源水平整合的困難。為從根源解決此問題,遵循物聯網開放式標準為有效的方案,例如開放地理空間聯盟(Open Geospatial Consortium, OGC)之SensorThings API(STA)。 STA不僅針對物聯網定義了完整且通用的資料模型以描述其屬性及關係的複雜性,亦提供RESTful服務介面以直覺且有彈性的方式訪問物聯網資源。為了管理資料屬性之間的關係,許多STA的實作使用關聯式資料庫(relational database, RDB)管理物聯網資料,例如FROST Server,GOST和Mozilla STA。然而,RDB在管理大量的多維度資料時面臨嚴重的資料插入及查詢效能下降問題。因此,本研究提出了一種針對STA服務的可擴展且高效的多維物聯網資料管理解決方案。具體來說,我們使用MongoDB為資料儲存系統,MongoDB為分散式文檔資料庫,並支持類似於RDB的關係連接功能。為了提高查詢大量多維物聯網資料的性能,我們應用了過往研究提出之自適應多屬性索引框架(Adaptive Multi-Attribute Indexing Framework, AMAIF)解決方案。在實驗中,我們對提出的STA實作進行壓力測試並與其他的STA實作進行了比較。結果表明在單純的多維度資料查詢中,所提出之系統有效增進查詢響應的速度。且在資料擴展性方面,得益於鍵值對儲存的優勢,可快速地插入大量資料且簡單地分割與擴充儲存空間,以上兩點足見本系統對於多維度資料的管理與查詢的效益。
摘要(英) The Internet of Things (IoT) is composed of various embedded devices that generate a large amount of sensor observation data. These observations are usually heterogeneous because they follow different data models or service agreements, which brings difficulties to data integration. To solve this problem, it is necessary to follow open standards specifically designed for IoT, such as the Open Geospatial Consortium (OGC) SensorThings API (STA). STA not only defines an IoT data model to capture the complexity of attributes and their relationships, but also provides a RESTful service interface to access IoT data. In order to manage the relationship between the properties of the Internet of Things, many STA implementations use relational database (RDB) solutions, such as FROST Server, GOST and Mozilla STA. However, RDB faces serious performance problems when managing large amounts of multi-dimensional data. Therefore, this research proposes a scalable and efficient data management solution for multi-dimensional IoT data query on STA services. Specifically, we use MongoDB as a data storage system, which is a distributed document-based database that supports table-join operators similar to RDB. In order to improve the performance of querying large amount of multi-dimensional IoT data, we apply the previously proposed Adaptive Multi-Attribute Indexing Framework (AMAIF) solution. In the experiment, we compare the proposed STA implementation with FROST Server. The experiment results show that in the multi-dimensional data query, the proposed system can effectively improve the speed of query response. And in terms of the data scalability, a large amount of data can be inserted quickly and can be easily divided and expanded in KVS stores.
關鍵字(中) ★ 鍵值對儲存
★ 組合索引
★ 多維度資料
★ 物聯網
★ RESTful 服務
關鍵字(英) ★ Key value store
★ combined index
★ multi-dimensional
★ Internet of Things
論文目次 摘 要 i
Abstract ii
目錄 iii
1. 引言 1
1.1. 物聯網之異質性 1
1.2. SenerThings API (STA)與SenerThings API實作 2
1.3. STA所面臨問題與研究目的 3
2. 文獻回顧 4
3. 研究方法 7
3.1 MongoDB資料綱要(Schema)與系統架構 7
3.2 AMAIF於MongoDB中的實作 9
4. 系統測試 14
4.1 測試說明 14
4.2 測試環境與測試資料集 14
4.3 MongoDB聚合查詢與AMAIF組合索引查詢 16
4.4 STA-MongoDB組合索引建置與PostgreSQL索引建置 19
4.5 STA-MongoDB與FROST Server查詢測試 21
4.6 STA-MongoDB與FROST Server輸入資料 27
5. 結果討論與未來工作 28
參考文獻 30
參考文獻 [1] Kazmi, A., Jan, Z., Zappa, A., & Serrano, M. (2016, November). Overcoming the heterogeneity in the internet of things for smart cities. In International workshop on interoperability and open-source solutions (pp. 20-35). Springer, Cham.
[2] Liang, S., Huang, C. Y., & Khalafbeigi, T. (2016). OGC SensorThings API Part 1: Sensing, Version 1.0.
[3] Huang, C.Y. and Chang, Y.J., 2021. An Adaptively Multi-Attribute Index Framework for Big IoT Data, Computers and Geosciences. 155, 104841.
[4] Eldawy, A., & Mokbel, M. F. (2015, April). Spatialhadoop: A mapreduce framework for spatial data. In 2015 IEEE 31st international conference on Data Engineering (pp. 1352-1363). IEEE.
[5] Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., ... & Gruber, R. E. (2008). Bigtable: A distributed storage system for structured data. ACM Transactions on Computer Systems (TOCS), 26(2), 1-26.


[6] Nishimura, S., Das, S., Agrawal, D., & El Abbadi, A. (2011, June). Md-hbase: A scalable multi-dimensional data infrastructure for location aware services. In 2011 IEEE 12th International Conference on Mobile Data Management (Vol. 1, pp. 7-16). IEEE.
[7] Watari, Y., Keyaki, A., Miyazaki, J., & Nakamura, M. (2018, September). Efficient Aggregation Query Processing for Large-Scale Multidimensional Data by Combining RDB and KVS. In International Conference on Database and Expert Systems Applications (pp. 134-149). Springer, Cham.
[8] Makris, A., Tserpes, K., Spiliopoulos, G., & Anagnostopoulos, D. (2019, March). Performance Evaluation of MongoDB and PostgreSQL for Spatio-temporal Data. In EDBT/ICDT Workshops.
[9] Jung, M. G., Youn, S. A., Bae, J., & Choi, Y. L. (2015, November). A study on data input and output performance comparison of mongodb and postgresql in the big data environment. In 2015 8th International Conference on Database Theory and Application (DTA) (pp. 14-17). IEEE.
[10] Naheman, W., & Wei, J. (2013, December). Review of NoSQL databases and performance testing on HBase. In Proceedings 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC) (pp. 2304-2309). IEEE.
[11] Sahatqija, K., Ajdari, J., Zenuni, X., Raufi, B., & Ismaili, F. (2018, May). Comparison between relational and NOSQL databases. In 2018 41st international convention on information and communication technology, electronics and microelectronics (MIPRO) (pp. 0216-0221). IEEE.
[12] Parker, Z., Poe, S., & Vrbsky, S. V. (2013, April). Comparing nosql mongodb to an sql db. In Proceedings of the 51st ACM Southeast Conference (pp. 1-6).
指導教授 黃智遠(Chih-Yuan Huang) 審核日期 2022-1-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明