參考文獻 |
[1] R. Bruck, K. Hahn, and J. Stienecker, “Technology description methods for LIGA processes”, Journal of Micromechanics and Microengineering. 5(2): p. 196, 1995
[2] M. Abraham, J. Arnold, W. Ehrfeld, K. Hesch, H. Moebius, T. Paatzsch, and C.L. Schutz. Laser LIGA: a cost-saving process for flexible production of microstructures, in Micromachining and Microfabrication Process Technology. International Society for Optics and Photonics, 1995
[3] P. Rai-Choudhury, Handbook of microlithography, micromachining, and microfabrication: microlithography. Vol. 1, SPIE press. 1997
[4] X. Li, C. Wang, W. Zhang, and Y. Li, “Fabrication and characterization of porous Ti6Al4V parts for biomedical applications using electron beam melting process”, Materials Letters. 63(3-4): p. 403-405, 2009
[5] L.S. Bertol, W.K. Júnior, F.P. Da Silva, and C. Aumund-Kopp, “Medical design: Direct metal laser sintering of Ti–6Al–4V”, Materials & Design. 31(8): p. 3982-3988, 2010
[6] J.D. Madden and I.W. Hunter, “Three-dimensional microfabrication by localized electrochemical deposition”, Journal of microelectromechanical systems. 5(1): p. 24-32, 1996
[7] B. Veilleux, A.-M. Lafront, and E. Ghali, “Effect of thiourea on nodulation during copper electrorefining using scaled industrial cells”, Canadian metallurgical quarterly. 40(3): p. 343-354, 2001
[8] V. Donepudi, R. Venkatachalapathy, P.O. Ozemoyah, C. Johnson, and J. Prakash, “Electrodeposition of copper from sulfate electrolytes: Effects of Thiourea on resistivity and electrodeposition mechanism of copper”, Electrochemical and Solid-State Letters. 4(2): p. C13, 2001
[9] A.E. Bolzán, A. Haseeb, P.L. Schilardi, R.C. Piatti, R.C. Salvarezza, and A.J. Arvia, “Anodisation of copper in thiourea-and formamidine disulphide-containing acid solution.: Part I. Identification of products and reaction pathway”, Journal of Electroanalytical Chemistry. 500(1-2): p. 533-542, 2001
[10] B. Ke, J.J. Hoekstra, B.C. Sison, and D. Trivich, “Role of thiourea in the electrodeposition of copper”, Journal of the Electrochemical Society. 106(5): p. 382, 1959
[11] B. Veilleux, A.-M. Lafront, and E. Ghali, “Influence of gelatin on deposit morphology during copper electrorefining using scaled industrial cells”, Canadian metallurgical quarterly. 41(1): p. 47-62, 2002
[12] J.J. Kelly and A.C. West, “Copper deposition in the presence of polyethylene glycol: II. Electrochemical impedance spectroscopy”, Journal of The Electrochemical Society. 145(10): p. 3477, 1998
[13] E. El-Giar and D. Thomson. Localized electrochemical plating of interconnectors for microelectronics, in IEEE WESCANEX 97 Communications, Power and Computing. Conference Proceedings. IEEE, 1997
[14] R. Said, “Microfabrication by localized electrochemical deposition: experimental investigation and theoretical modelling”, Nanotechnology. 14(5): p. 523, 2003
[15] S. Seol, J. Kim, J. Je, Y. Hwu, and G. Margaritondo, “Fabrication of freestanding metallic micro hollow tubes by template-free localized electrochemical deposition”, Electrochemical and solid-state letters. 10(5): p. C44, 2007
[16] S. Seol, J. Yi, X. Jin, C. Kim, J. Je, W. Tsai, P. Hsu, Y. Hwu, C. Chen, and L. Chang, “Coherent microradiology directly observes a critical cathode-anode distance effect in localized electrochemical deposition”, electrochemical and solid-state letters. 7(9): p. C95, 2004
[17] C. Lin, C. Lee, J. Yang, and Y. Huang, “Improved copper microcolumn fabricated by localized electrochemical deposition”, electrochemical and solid-state letters. 8(9): p. C125, 2005
[18] T.-K. Chang, 微陽極導引電鍍法製作微銅柱及銅柵欄之研究. 2004, National Central University.
[19] 楊仁泓, 黃英修, 李春穎, and 林招松, “局部電化學沈積法之一微結構製程及機械性質量測”, 材料科學與工程. 37(2): p. 93-99, 2005
[20] J. Lin, T. Chang, J. Yang, J. Jeng, D. Lee, and S. Jiang, “Fabrication of a micrometer Ni–Cu alloy column coupled with a Cu micro-column for thermal measurement”, Journal of Micromechanics and Microengineering. 19(1): p. 015030, 2008
[21] J. Lin, S. Jang, D. Lee, C. Chen, P. Yeh, T. Chang, and J. Yang, “Fabrication of micrometer Ni columns by continuous and intermittent microanode guided electroplating”, Journal of Micromechanics and Microengineering. 15(12): p. 2405, 2005
[22] 陳譽升, “鎳微柱電鍍受鍍浴黏度與電阻率之影響”, 2011
[23] P.-C. Yeh, 微陽極引導電鍍與監測. 2003, National Central University.
[24] G.-Y. Lai, 微陽極導引電鍍銅其組織及底部覆蓋範圍之探討. 2006, National Central University.
[25] J.-H. Yang, 微陽極導引電鍍法製備微析物之局部電場強度分析. 2009, National Central University.
[26] J.-H. Jeng, 以微陽極導引電鍍法製作鎳銅合金微柱. 2005, National Central University.
[27] C.-C. Huang, 微電鍍法之製程參數對其製備鎳鐵合金微柱之形貌, 機械性質與防蝕特性之影響. 2010, National Central University.
[28] Y.-J. Ciou, Y.-R. Hwang, and J.-C. Lin, “Fabrication of two-dimensional microstructures by using micro-anode-guided electroplating with real-time image processing”, ECS Journal of Solid State Science and Technology. 3(7): p. P268, 2014
[29] N.-H. Gu, 以微陽極導引電鍍法製備銅螺旋微米結構與其機械性質分析. 2015, National Central University.
[30] L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu, “Ultrahigh strength and high electrical conductivity in copper”, Science. 304(5669): p. 422-426, 2004
[31] X. Zhang, H. Wang, X. Chen, L. Lu, K. Lu, R. Hoagland, and A. Misra, “High-strength sputter-deposited Cu foils with preferred orientation of nanoscale growth twins”, Applied Physics Letters. 88(17): p. 173116, 2006
[32] K.-J. Chen, J.A. Wu, and C. Chen, “Effect of Reverse Currents during Electroplating on the⟨ 111⟩-Oriented and Nanotwinned Columnar Grain Growth of Copper Films”, Crystal Growth & Design. 20(6): p. 3834-3841, 2020
[33] K.S. Kumar, K. Biswas, and R. Balasubramaniam, “Mechanism of film growth of pulsed electrodeposition of nanocrystalline copper in presence of thiourea”, Journal of Nanoparticle Research. 13(11): p. 6005-6012, 2011
[34] C.-H. Chiang, C.-C. Lin, and C.-C. Hu, “Effects of Thiourea and Allyl Thioura on the Electrodeposition and Microstructures of Copper from Methanesulfonic Acid Baths”, Journal of The Electrochemical Society. 168(3): p. 032505, 2021
[35] N. Tantavichet and M.D. Pritzker, “Effect of plating mode, thiourea and chloride on the morphology of copper deposits produced in acidic sulphate solutions”, Electrochimica acta. 50(9): p. 1849-1861, 2005
[36] N. Tantavichet, S. Damronglerd, and O. Chailapakul, “Influence of the interaction between chloride and thiourea on copper electrodeposition”, Electrochimica Acta. 55(1): p. 240-249, 2009
[37] H. Natter and R. Hempelmann, “Nanocrystalline copper by pulsed electrodeposition: the effects of organic additives, bath temperature, and pH”, The Journal of Physical Chemistry. 100(50): p. 19525-19532, 1996
[38] K.S. Kumar and K. Biswas, “Effect of thiourea on grain refinement and defect structure of the pulsed electrodeposited nanocrystalline copper”, Surface and Coatings Technology. 214: p. 8-18, 2013
[39] M.S. Kang, S.-K. Kim, K. Kim, and J.J. Kim, “The influence of thiourea on copper electrodeposition: Adsorbate identification and effect on electrochemical nucleation”, Thin Solid Films. 516(12): p. 3761-3766, 2008
[40] W. Wu, S. Brongersma, M. Van Hove, and K. Maex, “Influence of surface and grain-boundary scattering on the resistivity of copper in reduced dimensions”, Applied physics letters. 84(15): p. 2838-2840, 2004
[41] J. Plombon, E. Andideh, V.M. Dubin, and J. Maiz, “Influence of phonon, geometry, impurity, and grain size on copper line resistivity”, Applied physics letters. 89(11): p. 113124, 2006
[42] H. Angus, “The significance of hardness”, Wear. 54(1): p. 33-78, 1979
[43] Y. Zhao, I. Cheng, M. Kassner, and A. Hodge, “The effect of nanotwins on the corrosion behavior of copper”, Acta Materialia. 67: p. 181-188, 2014 |