博碩士論文 108323038 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:3.22.181.148
姓名 林琴南(Cin-Nan Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 超音波輔助電泳沉積拋光鐵基金屬玻璃放電面之研究
(The Study of EDMed Surface of the Fe-based Metallic Glass Polishing by Ultrasonic Vibration-assisted Electrophoretic Deposition)
相關論文
★ 電泳沉積輔助拋光於SUJ2軸承鋼加工特性之研究★ 碳化矽電泳拋光矽晶圓表面粗糙度之研究
★ 超音波輔助添加導電粉末於放電加工鐵基金屬玻璃之研究★ 超音波輔助液中磨削鐵基金屬玻璃之研究
★ 脈衝複合偏壓電化學放電加工石英晶圓之研究★ 超音波振動輔助電化學放電加工石英晶圓陣列微孔之研究
★ 超音波輔助電化學留心加工矩槽圓柱構造之研究★ 超音波輔助連續流式線電化學放電加工及電泳拋光石英晶圓之研究
★ 電化學放電複合超音波振動輔助電泳沉積加工石英晶圓微形方孔之研究★ 電極公轉繞圓電化學放電切割加工石英晶圓之研究
★ 快速塑性成型(QPF)製程的精準度探討★ 利用灰色關聯分析法探究線切割放電於SKD61加工之最佳化參數
★ 超音波輔助微電化學鑽孔鎳基合金加工研究★ 超音波輔助添加碳化矽粉末於放電加工模具鋼SKD61之研究
★ Inconel 718 鎳基超合金異形電極微孔放電加工之研究★ 實驗分析研究應用於減低數據中心伺服器硬碟之結構傳遞振動
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-6-1以後開放)
摘要(中) 鐵基金屬玻璃因為其非晶特性而具有高機械強度及抗腐蝕能力等優勢,然而也因其具有硬脆特性,在採用傳統機械拋光法進行放電加工後材料表面拋光時,容易發生材料表面破裂的情形。為了克服前述困難點,本研究係採用超音波輔助電泳沉積拋光(Ultrasonic Vibration-assisted Electrophoretic Deposition Polishing, UAEPDP),進行鐵基金屬玻璃放電面拋光之研究,設定之實驗單因子為電泳沉積電壓、拋光時間、超音波功率等級、磨輪荷重及磨輪轉速,探討各項因子與表面粗糙度之關係,並在加工後針對試片材料以光學顯微鏡(OM)及掃描式電子顯微鏡(SEM)進行表面觀察,再以X射線繞射儀(XRD)進行相鑑定分析,探討試片加工後有無產生再結晶現象。
實驗結果顯示,當採用參數組合電泳沉積電壓25 V、拋光時間10 min、超音波功率等級Level 10、磨輪荷重120 g及磨輪轉速700 rpm,可得最佳之表面粗糙度0.044 μmRa,相較於無添加電泳沉積者及無添加超音波輔助者分別下降73.0%及67.9%,顯示應用超音波輔助電泳沉積拋光機制確能有效改善鐵基金屬玻璃放電面之表面品質,且試片經過拋光後仍為非晶狀態,證實超音波輔助電泳沉積拋光可應用於鐵基金屬玻璃表面拋光。
摘要(英) Fe-based metallic glass possesses high mechanical strength and high anti-corrosion ability due to its amorphous property. This unique property, however, leads to hard-brittle behavior, causing surface fracture during conventional polishing of the EDMed material surface. To solve this difficulty, ultrasonic vibration-assisted electrophoretic deposition polishing (UAEPDP) was adopted in this study to conduct the polishing on the EDMed surface of the Fe-based metallic glass. The influences of experimental parameters on surface roughness were investigated, including electrophoretic deposition voltage, polishing time, ultrasonic vibration power, loading, and rotation speed. The surfaces of experimental specimens after polishing were observed with the optical microscope (OM) and scanning electrical microscope (SEM). The phase properties were measured with X-ray diffraction patterns (XRD) to evaluate the recrystallization phenomenon.
According to the experimental results, the surface roughness of 0.044 μmRa could be obtained by executing the combination of the parameters, including electrophoretic deposition voltage of 25 V, polishing time of 10 min, ultrasonic vibration power of level 10, loading of 120 g, and rotation speed of 700 rpm. This surface roughness was 73.0% lower than the process without electrophoretic deposition and 67.9% lower than the process without ultrasonic vibration individually. The result indicated that the mechanism of UAEPDP could certainly improve the surface quality of the Fe-based bulk metallic glass after EDM, and the amorphous state of the specimen after polishing verified that UAEPDP could be applied to the surface finishing of Fe-based bulk metallic glass.
關鍵字(中) ★ 放電加工
★ 金屬玻璃
★ 超音波輔助
★ 拋光
★ 電泳沉積
關鍵字(英) ★ electrical discharge machining
★ metallic glass
★ ultrasonic vibration assisted
★ polishing
★ electrophoretic deposition
論文目次 目 錄
摘 要 II
ABSTRACT III
誌 謝 V
目 錄 VI
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機及目的 3
1-3 文獻回顧 4
1-4 論文架構 7
第二章 實驗原理 8
2-1 放電加工原理 8
2-2 電泳沉積加工原理 12
2-2-1 顆粒表面電荷來源 12
2-2-2 電雙層機制 13
2-2-3 懸浮液中粉末顆粒間分散行為之機制 14
2-2-4 定電壓下之電泳沉積速率 15
2-3 超音波加工原理 17
2-3-1 超音波加工基本原理 17
2-3-2 超音波輔助拋光 18
第三章 實驗設備與材料 19
3-1 實驗簡介 19
3-2 實驗設備 21
3-3 實驗材料 33
3-4 實驗流程與方法 40
第四章 結果與討論 45
4-1 不同輔助方法對於鐵基金屬玻璃拋光之影響 45
4-2 電泳沉積電壓對鐵基金屬玻璃放電面拋光之影響 48
4-3 拋光時間對鐵基金屬玻璃放電面拋光之影響 52
4-4 超音波功率等級對鐵基金屬玻璃放電面拋光之影響 56
4-5 磨輪荷重對鐵基金屬玻璃放電面拋光之影響 60
4-6 磨輪轉速對鐵基金屬玻璃放電面拋光之影響 64
4-7 鐵基金屬玻璃放電面拋光後之表面結晶特性 69
第五章 結論 70
未來展望 73
參考文獻 74
參考文獻 參考文獻
[1] M. Wu, B. Guo, Q. Zhao, and P. He, Precision grinding of a microstructured surface on hard and brittle materials by a microstructured coarse-grained diamond grinding wheel, Ceramics International, vol. 44, no. 7, pp. 8026-8034, 2018.
[2] F. Wenwer, K. Knorr, M. Macht, and H. Mehrer, Ni tracer diffusion in the bulk metallic glasses Zr41Ti14Cu12. 5Ni10Be22. 5 and Zr65Cu17. 5Ni10Al7. 5, Defect and Diffusion Forum, vol. 143, pp. 831-836, 1997.
[3] W. König, D. Dauw, G. Levy, and U. Panten, EDM-future steps towards the machining of ceramics, CIRP Annals, vol. 37, no. 2, pp. 623-631, 1988.
[4] F. N. Leão and I. R. Pashby, A review on the use of environmentally-friendly dielectric fluids in electrical discharge machining, Journal of Materials Processing Technology, vol. 149, no. 1-3, pp. 341-346, 2004.
[5] 許世勳, 大面積放電加工技術之研究, 國立中央大學, 2012.
[6] C. A. O. Luzia, C. A. H. Laurindo, P. C. Soares, R. D. Torres, L. A. Mendes, and F. L. Amorim, Recast layer mechanical properties of tool steel after electrical discharge machining with silicon powder in the dielectric, The International Journal of Advanced Manufacturing Technology, vol. 103, no. 1, pp. 15-28, 2019.
[7] H. Hamaker, Formation of a deposit by electrophoresis, Transactions of the Faraday Society, vol. 35, pp. 279-287, 1940.
[8] J. Ikeno, Y. Tani, A. Fukutani, and H. Sato, Development of chipping-free dicing technology applying electrophoretic deposition of ultrafine abrasives, CIRP annals, vol. 40, no. 1, pp. 351-354, 1991.
[9] Z. Haga and T. Semba, Electrophoretic polishing of zirconia ceramics using a porous anodic film as a binder of ultrafine silica abrasives, JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, vol. 41, no. 4, pp. 922-928, 1998.
[10] Y. Yamamoto, H. Maeda, H. Shibutani, H. Suzuki, and O. Horiuchi, A study on constant-pressure grinding with EPD pellets, Key Engineering Materials, vol. 257, pp. 135-140, 2004.
[11] C. K. Yang, J. C. Hung, C. P. Cheng, W. T. Lin, and B. H. Yan, Electrophoretic deposition characteristics of an electrical discharge machined micro-tool for micro-hole polishing in quartz, Journal of Micromechanics and Microengineering, vol. 20, no. 5, p. 055031, 2010.
[12] H. P. Tsui, J. C. Hung, K. L. Wu, J. C. You, and B. H. Yan, Fabrication of a microtool in electrophoretic deposition for electrochemical microdrilling and in situ micropolishing, Materials and Manufacturing Processes, vol. 26, no. 5, pp. 740-745, 2011.
[13] X. Y. Mao, J. Lu, and H. Guo, Study on Electrophoretic Deposition Characteristics of Ultra-Fine Diamond Powder, Advanced Materials Research, vol. 472, pp. 2702-2706, 2012.
[14] L. D. Yang, K. L. Wu, C. C. Yeh, and H. M. Lee, Study on precision polishing technology combining electrophoresis and magnetic finishing, International Journal of Materials Science and Applications, vol. 5, no. 6, pp. 235-240, 2016.
[15] N. V. Khatekar and R. S. Pawade, Analysis and modeling of surface characteristics in electrophoretic deposition–assisted internal polishing of AISI 304 steel, The International Journal of Advanced Manufacturing Technology, vol. 104, no. 5, pp. 3083-3094, 2019.
[16] H. Adibi, M. Khani, and H. Esmaeili, Experimental evaluation of electrophoretic deposition-assisted polishing, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, vol. 235, no. 5, pp. 1726-1734, 2021.
[17] N. Kobayashi, Y. Wu, M. Nomura, and T. Sato, Precision treatment of silicon wafer edge utilizing ultrasonically assisted polishing technique, Journal of Materials Processing Technology, vol. 201, no. 1-3, pp. 531-535, 2008.
[18] V. G. Navas et al., Surface integrity of rotary ultrasonic machined ZrO2–TiN and Al2O3–TiC–SiC ceramics, Journal of the European Ceramic Society, vol. 35, no. 14, pp. 3927-3941, 2015.
[19] H. M. Lee and T. M. Chen, A Study of Polishing Feature of Ultrasonic-Assisted Vibration Method in Bamboo Charcoal, Advances in Materials Science and Engineering, vol. 2017, 2017.
[20] T. Yu, J. An, X. Yang, X. Bian, and J. Zhao, The study of ultrasonic vibration assisted polishing optical glass lens with ultrasonic atomizing liquid, Journal of Manufacturing Processes, vol. 34, pp. 389-400, 2018.
[21] W. Huang, Q. Zhong, D. An, C. Yang, and Y. Zhang, Mechanism and Experiment Study of Non-Contact Ultrasonic Assisted Grinding, Actuators,vol. 10, no. 9, p. 238, 2021.
[22] M. Bakkal, C. T. Liu, T. R. Watkins, R. O. Scattergood, and A. J. Shih, Oxidation and crystallization of Zr-based bulk metallic glass due to machining, Intermetallics, vol. 12, no. 2, pp. 195-204, 2004.
[23] S. H. Yeo, P. C. Tan, E. Aligiri, S. B. Tor, and N. H. Loh, Processing of zirconium-based bulk metallic glass (BMG) using micro electrical discharge machining (Micro-EDM), Materials and Manufacturing Processes, vol. 24, no. 12, pp. 1242-1248, 2009.
[24] F. J. Shiou, P. H. Loc, and N. H. Dang, Surface finish of bulk metallic glass using sequential abrasive jet polishing and annealing processes, The International Journal of Advanced Manufacturing Technology, vol. 66, no. 9-12, pp. 1523-1533, 2013.
[25] S. Kuriakose, P. K. Patowari, and J. Bhatt, Machinability study of Zr-Cu-Ti metallic glass by micro hole drilling using micro-USM, Journal of Materials Processing Technology, vol. 240, pp. 42-51, 2017.
[26] 李培豪, 超音波輔助添加導電粉末於放電加工鐵基金屬玻璃之研究, 國立中央大學, 2019.
[27] 李承諭, 超音波輔助液中磨削鐵基金屬玻璃之研究, 國立中央大學, 2020.
[28] F. L. Zhang, G. W. Huang, J. M. Liu, Z. J. Du, S. X. Wu, and C. Y. Wang, Grinding performance and wear of metal bond super-abrasive tools in grinding of Zr-based bulk metallic glass, International Journal of Refractory Metals and Hard Materials, vol. 97, p. 105501, 2021.
[29] 陳正德, 碳化矽的電泳沈積現象探討, 國立中央大學, 2002.
[30] P. Sarkar and P. S. Nicholson, Electrophoretic deposition (EPD): mechanisms, kinetics, and application to ceramics, Journal of the American Ceramic Society, vol. 79, no. 8, pp. 1987-2002, 1996.
[31] S. L. Zhong, Z. M. Dang, W. Y. Zhou, and H. W. Cai, Past and future on nanodielectrics, IET Nanodielectrics, vol. 1, no. 1, pp. 41-47, 2018.
[32] K. l. Kuo and C. C. Tsao, Rotary ultrasonic-assisted milling of brittle materials, Transactions of Nonferrous Metals Society of China, vol. 22, pp. s793-s800, 2012.
[33] 楊忠義, 許富銓, 蕭美技, 李正雄, 超音波振動輔助加工於玻璃材料加工研究, 工程科技與教育學刊, vol. 7, no. 1, pp. 64-74, 2010.
[34] H. Wang, F. Ning, Y. Hu, P. Fernando, Z. J. Pei, and W. Cong, Surface grinding of carbon fiber–reinforced plastic composites using rotary ultrasonic machining: effects of tool variables, Advances in Mechanical Engineering, vol. 8, no. 9, p. 1687814016670284, 2016.
[35] F. Chen, G. Mei, B. Zhao, W. Bie, and G. Li, Study on the characteristics of zirconia ceramic in three-dimensional ultrasonic vibration-assisted ELID internal grinding, Journal of Mechanical Science and Technology, vol. 34, no. 1, pp. 333-344, 2020.
指導教授 崔海平(Hai-Ping Tsui) 審核日期 2022-5-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明