參考文獻 |
[1] L. Jing, L. Yao, M. Zhao, L. P. Peng and M. Liu, “Organ Preservation: from the Past to the Future”, Acta Pharmacologica Sinica, Vol. 39, pp. 845-857, 2018.
[2] 李宣書,淺談組織工程,物理雙月刊,2001年。
[3] B. Gaye, G. S. Tajeu, R. S. Vasan, C. Lassale, N. B. Allen, A. S. Manoux and X. Jouven, “Association of Changes in Cardiovascular Health Metrics and Risk of Subsequent Cardiovascular Disease and Mortality”, Journal of the American Heart Association, Vol. 9, e017458, 2020.
[4] W. Zhang, H. Iso, Y. Murakami, K. Miura, M. Nagai, D. Sugiyama, H. Ueshima, T. Okamura and E. J. Group, “Serum Uric Acid and Mortality Form Cardiovascular Disease: EPOCH-JAPAN Study”, Journal of Atherosclerosis and Thrombosis, Vol. 23, pp. 1365-1366, 2016.
[5] J. Eero, “Obesity and Cardiovascular Disease”, Vol. 67, pp. 25-32, 2015.
[6] L. Jingyi, Z. Bin, L. Liang, Y. Jun and F. Jianzhong, “Additive-lathe 3D Bioprinting of Bilayered Nerve Conduits Incorporated with Supportive Cells”, Bioactive Materials, Vol. 6, pp. 219-229, 2021.
[7] How to Make Almost Anything:Final Project - The Additive Lathe, Available at:http://fab.cba.mit.edu/classes/863.11/people/yoav.shterman/secondUpdate.html
[8] O. Byrne, F. Coulter, M. Glynn, J. F. X. Jones, A. N. Annaidh, E. D. Ocearbhaill and D. P. Holland, “Additive Manufacture of Composite Soft Pneumatic Actuators”, Soft Robotics, Vol. 5, pp. 726-736, 2018.
[9] A. Guerra, A. Roca and J. d. Ciurana, “A Novel 3D Additive Manufacturing Machine to Biodegradable Stents”, Procedia Manufacturing, Vol. 13, pp. 718-723, 2017.
[10] M. Rabioneta, A. J. Guerrab, T. Puiga and J. Ciurana, “3D Printed Tubular Scaffolds for Vascular Tissue Engineering”, Procedia CIRP, Vol. 68, pp. 352-357, 2018.
[11] C. Norotte, F. S. Marga, L. E. Niklason and G. Forgacs, “Scaffold-Free Vascular Tissue Engineering Using Bioprinting”, Biomaterials, Vol. 30, pp. 5910-5917, 2009.
[12] Y. Zhang, Y. Yu, H. Chen and I. T. Ozbolat, “Characterization of Printable Cellular Micro-Fluidic Channels for Tissue Engineering”, Biofabrication, Vol. 5, 25004, 2013.
[13] Y. Jung, H. Ji, Z. Chen, H. F. Chan, L. Atchison, B. Klitzman, G. Truskey and K. W. Leong, “Scaffold-Free, Human Mesenchymal Stem Cell-Based Tissue Engineered Blood Vessels”, Scientific Reports, Vol. 5, 15116, 2015.
[14] D. Lei, B. Luo, Y. Guo, D. Wang, H. Yang, S. Wang, H. Xuan, A. Shen, Y. Zhang, Z. Liu, C. He, F. L. Qing, Y. Xu, G. Zhou and Z. You, “4-Axis Printing Microfibrous Tubular Scaffold and Tracheal Cartilage Application”, Science China Materials, Vol. 62, pp. 1910-1920, 2019.
[15] Q. Gao, Z. Liu, Z. Lin, J. Qiu, Y. Liu, A. Liu, Y. Wang, M. Xiang, B. Chen, J. Fu and Y. He, “3D Bioprinting of Vessel-Like Structures with Multilevel Fluidic Channels”, ACS Biomaterials Science & Engineering, Vol. 3, pp. 399-408, 2017.
[16] Q. Gao, Z. Liu, Z. Lin, J. Qiu, Y. Liu, A. Liu, Y. Wang, M. Xiang, B. Chen, J. Fu and Y. He, “3D Bioprinting of Vessel-Like Structures with Multilevel Fluidic Channels (Supplemental Materials)”, ACS Biomaterials Science & Engineering, Vol. 3, pp. 399-408, 2017.
[17] T. S. Yarza, I. Bataille and D. Letourneur, “Cardiovascular Bio-Engineering: Current State of the Art”, J Cardiovasc Transl Res, Vol. 10, pp. 180-193, 2017.
[18] K. Reeser and A. L. Doiron, “Three-Dimensional Printing on a Rotating Cylindrical Mandrel: A Review of Additive-Lathe 3D Printing Technology”, 3D Printing & Additive Manufacturing, Vol. 6, 6, 2019.
[19] A. Kenich, M. B. Galpin, E. Rolland and Y. Ibrahim, “Lathe-Type 3D Printer”, Imperial College London, ME3 DMT Final Reportgroup 27, 2013.
[20] A. H. C. Au, A. Berger and A. Kigler, “Development of a 3D Printer Capable of Printing Biological Material using a Radial Coordinate System”, Binghamton University, Bachelor of Science in Biomedical Engineering, 2015.
[21] H. Liu, H. Zhou, H. Lan, T. Liu, X. Liu and H. Yu, “3D Printing of Artificial Blood Vessel: Study on Multi-Parameter Optimization Design for Vascular Molding Effect in Alginate and Gelatin”, Micromachines, Vol. 8, 237, 2017.
[22] K. V. Kampen, E. Olaret, E. Olaret, I. C. Stancu, L. Moroni and C. Mota, “Controllable Four Axis Extrusion-Based Additive Manufacturing System for the Fabrication of Tubular Scaffolds with Tailorable Mechanical Properties”, Materials Science & Engineering: C, Vol. 119, 111472, 2021.
[23] REVOTEK:Technology / T-Series Printers™, Available at:http://www.revotekhealth.com/technology.aspx?t=1
[24] S. Pina, V. P. Ribeiro, C. F. Marques, F. R. Maia, T. H. Silva, R. L. Reis and J. M. Oliveira, “Scaffolding Strategies for Tissue Engineering and Regenerative Medicine Applications”, Materials, Vol. 12, 1824, 2019.
[25] Y. Du, J. L. Guo, J. Wang, A. G. Mikos and S. Zhang, “Hierarchically Designed Bone Scaffolds: From Internal Cues to External Stimuli”, Biomaterials, Vol. 218, 119334, 2019.
[26] S. Yi, F. Ding, L.Gong and X. Gu, “Extracellular Matrix Scaffolds for Tissue Engineering and Regenerative Medicine”, Stem Cell Research & Therapy, Vol. 12, pp. 233-246, 2017.
[27] B. Dhandayuthapani, Y. Yoshida, T. Maekawa and D. S. Kumar, “Polymeric Scaffolds in Tissue Engineering Application: A Review”, Hindawi, Vol. 2011, 290602, 2011.
[28] M. Jafari, Z. Paknejad, M. R. Rad, S. R. Motamedian, M. J. Eghbal, N. Nadjmi and A. Khojasteh, “Polymeric Scaffolds in Tissue Engineering: A Literature Review”, Journal of Biomedical Materials Research B-Applied Biomaterials, Vol. 105, pp. 431-459, 2017.
[29] D. G. Tamay, T. D. Usal, A. S. Alagoz, D. Yucel, N. Hasirci and V. Hasirci, “3D and 4D Printing of Polymers for Tissue Engineering Applications”, Biotechnology & Bioengineering, Vol. 7, 164, 2019.
[30] G. H. Wu and S. h. Hsu, “Review: Polymeric-Based 3D Printing for Tissue Engineering”, Journal of Medical & Biological Engineering, Vol. 35, pp. 285-292, 2015.
[31] Z. Xie, M. Gao, A. O. Lobo and T. J. Webster, “3D Bioprinting in Tissue Engineering for Medical Applications: The Classic and the Hybrid”, Polymers, Vol. 12, 1717, 2020.
[32] I. Zein, D. W. Hutmacher, K. C. Tan and S. H. Teoh, “Fused Deposition Modeling of Novel Scaffold Architectures for Tissue Engineering Applications”, Biomaterials, Vol. 23, pp. 1169-1185, 2002.
[33] C. Y. Liu, J. Tong, J. Ma, D. Wang, F. Xu, Y. L. Liu, Z. G. Chen and C. G. Lao, “Low-Temperature Deposition Manufacturing: A Versatile Material Extrusion-Based 3D Printing Technology for Fabricating Hierarchically Porous Materials”, Hindawi, Vol. 2019, pp. 1-14, 2019.
[34] Y. Lu, G. Mapili, G. Suhali, S. C. Chen and K. Roy, “A Digital Micro-Mirror Device-Based System for the Microfabrication of Complex, Spatially Patterned Tissue Engineering Scaffolds”, Journal of Biomedical Materials Research Part A, Vol. 77, pp. 396-405, 2006.
[35] J. Zhang, Q. Hu, S. Wang, J. Tao and M. Gou, “Digital Light Processing Based Three-Dimensional Printing for Medical Applications”, Bioprinting, Vol. 6, 242, 2020.
[36] A. Mazzoli, “Selective Laser Sintering in Biomedical Engineering”, Medical & Biological Engineering & Computing, Vol. 51, pp. 245-256, 2013.
[37] G. Z. Tan and Y. Zhou, “Electrospinning of Biomimetic Fibrous Scaffolds for Tissue Engineering: A Review”, International Journal of Polymeric Materials & Polymeric Biomaterials, Vol. 69, pp. 947-960, 2020.
[38] J. Hong, M. Yeo, G. H. Yang and G. H. Kim, “Cell-Electrospinning and Its Application for Tissue Engineering”, International Journal of Molecular Sciences, Vol. 20, 6208, 2019.
[39] C. Korner, “Additive Manufacturing of Metallic Components by Selective Electron Beam Melting - A Review”, International Materials Reviews, Vol. 61, pp. 361-377, 2016.
[40] M. Cronskar , M. Backstrom and L. E. Rannar, “Production of Customized Hip Stem Prostheses - A Comparison Between Conventional Machining and Electron Beam Melting (EBM)”, Rapid Prototyping Journal, Vol. 19, pp. 365-372, 2013.
[41] C. Mandrycky, Z. Wang, K. Kim and D. H. Ki, “3D Bioprinting for Engineering Complex Tissues”, Biotechnology Advances, Vol. 34, pp. 422-434, 2016.
[42] J. J. Chung, H. Im, S. H. Kim, J. W. Park and Y. Jung, “Toward Biomimetic Scaffolds for Tissue Engineering: 3D Printing Techniques in Regenerative Medicine”, Biotechnology & Bioengineering, Vol. 8, 586406, 2020.
[43] A. Zaszczynska, M. M. Heljak, A. Gradys and P. Sajkiewicz, “Advances in 3D Printing for Tissue Engineering”, Materials, Vol. 14, 3149, 2021.
[44] B. K. Gu, D. J. Choi, S. J. Park, M. S. Kim, C. M. Kang and C. H. Kim, “3-Dimensional Bioprinting for Tissue Engineering Applications”, Biomaterials Research, Vol. 20, 12, 2016.
[45] S. L. Francis, C. D. Bella, G. G. Wallace and P. F. Choong, “Cartilage Tissue Engineering Using Stem Cells and Bioprinting Technology-Barriers to Clinical Translation”, Frontiers in Surgery, Vol. 5, 70, 2018.
[46] A. W. Cook and D. Youngs, “Rayleigh-Taylor Instability and Mixing”, Physica D: Nonlinear Phenomena, Vol. 37, pp. 270-287, 1989.
[47] S. Ding, L. Feng, J. Wu, F. Zhu, Z. Tan, and R. Yao, “Bioprinting of Stem Cells: Interplay of Bioprinting Process, Bioinks, and Stem Cell Properties”, ACS Biomaterials Science & Engineering, Vol. 4, pp. 3108-3124, 2018.
[48] X. Cui, J. Li, Y. Hartanto, M. Durham, J. Tang, H. Zhang, G. Hooper, K. Lim and T. Woodfield, “Advances in Extrusion 3D Bioprinting: a Focus on Multicomponent Hydrogel-Based Bioinks”, Advanced Healthcare Materials, Vol. 9, 1901648, 2020.
[49] S. B. Bammesberger, S. Kartmann, L. Tanguy, D. Liang, K. Mutschler, A. Ernst, R. Zengerle and P. Koltay, “A Low-Cost, Normally Closed, Solenoid Valve for Non-Contact Dispensing in the Sub-µL Range”, Micromachines, Vol. 4, pp. 9-21, 2013.
[50] I. T. Ozbolat and M. Hospodiuk, “Current Ddvances and Future Perspectives in Extrusion-Based Bioprinting”, Biomaterials, Vol. 76, pp. 321-343, 2016.
[51] H. Gudapati, M. Dey and I. Ozbolat, “A Comprehensive Review on Droplet-Based Bioprinting: Past, Present and Future”, Biomaterials, Vol. 102, pp. 20-42, 2016.
[52] X. Li, B. Liu, B. Pei, J. Chen, D. Zhou, J. Peng, X. Zhang, W. Jia, and T. Xu, “Inkjet Bioprinting of Biomaterials”, Chemical Reviews, Vol. 120, pp. 10793-10833. 2020.
[53] F. Guillemot, B. Guillotin, A. Fontaine, M. Ali, S. Catros, V. Keriquel, J. C. Fricain, M. Remy, R. Bareille and J. A. Vilamitjana, “Laser-Assisted Bioprinting to Deal with Tissue Complexity in Regenerative Medicine”, MRS Bulletin, Vol. 36, pp. 1015-1019. 2011.
[54] F. Guillemot, A. Souquet, S. Catros and B. Guillotin, “Laser-Assisted Cell Printing: Principle, Physical Parameters Versus Cell Fate and Perspectives in Tissue Engineering”, Nanomedicine, Vol. 5, pp. 507-515, 2010.
[55] F. P. W. Melchels, J. Feijen and D. W. Grijpma, “A Review on Stereolithography and Its Applications in Biomedical Engineering”, Biomaterials, Vol. 31, pp. 6121-6130, 2010.
[56] J. Huang, Q. Qin and J. Wang, “A Review of Stereolithography: Processes and Systems”, Processes, Vol. 8, 1138, 2020.
[57] A. C. Burton, “Relation of Structure to Function of the Tissues of the Wall of Blood Vessels”, Physiology Rev, Vol. 34, pp.42-619, 1954.
[58] A. J. Boys, S. L. Barron, D. Tilev and R. M. Owens, “Building Scaffolds for Tubular Tissue Engineering”, Biotechnology & Bioengineering, Vol. 8, 589960, 2020.
[59] I. Holland, J. Logan, J. Shi, C. McCormick, D. Liu and W. Shu, “3D Biofabrication for Tubular Tissue Engineering”, Bio-Design & Manufacturing, Vol. 1, pp. 89-100, 2018.
[60] H. J. Jeong, H. Nam, J. Jang and S. J. Lee, “3D Biofabrication for Tubular Tissue Engineering”, Bioengineering, Vol. 7, 32, 2020.
[61] E. Tan and W. Y. Yeong, “Direct Bioprinting of Alginate-Based Tubular Constructs Using Multi-Nozzle Extrusion-Based Technique”, International Journal of Bioprinting, Vol. 1, pp. 49-56, 2015.
[62] K. Arai, D. Murata, A. R. Verissimo, Y. Mukae, M. Itoh, A. Nakamura, S. Morita, “Fabrication of Scaffold-Free Tubular Cardiac Constructs Using a Bio-3D Printer”, PLOS ONE, Vol. 15, e0243244, 2020.
[63] T. J. Hinton, A. Hudson, K. Pusch, A. Lee and A. W. Feinberg, “3D Printing PDMS Elastomer in a Hydrophilic Support Bath Via Freeform Reversible Embedding”, ACS Biomaterials Science & Engineering, Vol. 2, pp. 1781-1786, 2016.
[64] A. Kjar, B. McFarland, K. Mecham, N. Harward and Y. Huang, “Engineering of Tissue Constructs Using Coaxial Bioprinting”, Bioactive Materials, Vol. 6, pp. 460-471, 2021.
[65] I. G. Kim, S. A. Park, S. H. Lee, J. S. Choi, H. Cho, S. J. Lee, Y. W. Kwon and S. K. Kwon, “Transplantation of a 3D-Printed Tracheal Graft Combined with iPS Cell-Derived MSCs and Chondrocytes”, Scientific Reports, Vol. 10, 4326, 2020.
[66] 洪承暉,「使用微型閥並具備自動平台校正功能之三維生物列印機開發」,國立中央 大學,碩士論文,民國 107 年。
[67] L. Elviri, R. Foresti, C. Bergonzi, F. Zimetti, C. Marchi, A. Bianchera, F. Bernini, M. Silvestri and R. Bettini, “Highly Defined 3D Printed Chitosan Scaffolds Featuring Improved Cell Growth”, Biomedical Materials, Vol. 12, 45009, 2017.
[68] 邱景棟,「低溫三維列印之溫度調節演算法用於提升沉積面之垂直溫度均勻性」,國立中央大學,碩士論文,民國 109 年。 |