博碩士論文 108324004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:18.220.226.147
姓名 吳維妮(Wei-Ni Wu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 金屬-超分子硬桿-柔曲嵌段高分子薄膜應用於可拉伸式有機場效應電晶體
(Metallo-Supramolecular Rod-Coil Block Copolymer Thin Films for Stretchable Organic Field-Effect Transistor Applications)
相關論文
★ 硼氫化物-乙二醇醚類溶劑電解液應用於鎂複合電池正極之性質研究★ 離子液體與有機碳酸酯之混合型電解液應用於高電壓LiNi0.5Mn1.5O4正極材料
★ SiO2@AIZS奈米殼層結構合成及其光催化產氫研究★ 利用旋轉塗佈法製備固態電解質應用於鋰離子電池
★ 以不同流場電解液搭配發泡銅網作為鋅空氣電池負極集電網之電化學性質★ 鈰摻雜之固態電解質Li7La3Zr2O12應用於鋰離子電池
★ 使用Aspen Plus模擬連續式反應器之端羥基聚丁二烯自由基聚合和分離純化程序設計★ 奈米結構之Au/MnO2複合陰極觸媒材料
★ 使用接枝到表面法製備聚乙二醇高分子刷於自組裝單分子膜改質之矽基材★ 超音波輔助化學水浴法製備 AgInS2 薄膜之電化學阻抗頻譜分析
★ 硫化錫粉體作為鋰離子電池陽極活性材料的效能與穩定性研究★ IMPS於Ag-In-S半導體薄膜之分析與應用
★ LiFePO4和LiNi0.5Mn1.5O4於離子液體電解液中的鋰離子電池電化學特性★ 微波水熱法製備金屬硫化物粉體及其光化學產氫研究
★ 硫化錫-硫化銻作為鋰離子電池負極材料之研究★ 溶劑熱法製備Cu-In-Zn-S薄膜及其光電化學性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,可穿戴電子裝置受到很多人的關注,因此研究並開發可撓曲或可拉伸電子元件對於滿足這樣的未來需求是目前很重要的課題之一。本篇論文使用一種新型態設計的聚苯乙烯-b-聚(3-己基噻吩)嵌段高分子,不同於傳統的合成方法,本篇論文所使用的半導體是利用金屬配位超分子的方法來合成的嵌段高分子,而這樣的合成方法可以大大的縮短合成聚合的時間。使用嵌段高分子製備電晶體元件的性能表現與使用聚(3-己基噻吩)的性能表現是相當的,其遷移率皆為10^−2 cm^2 V^−1 s^−1左右。此外,也利用原子力顯微鏡及二維-低掠角廣角繞射儀分別分析薄膜的表面形貌及微結構。在應力-應變測試中,可發現嵌段高分子相比聚(3-己基噻吩)有更好的可拉伸性質,這樣的結果可以說明含有金屬配位鍵的新型嵌段高分子是具有實用性的,也透過此研究證明這種分子設計對於未來應用於可穿戴式電子裝置是有潛力的。
摘要(英) Recently, wearable electronics have been drawn numerous interests. It is crucial important to develop flexible or stretchable devices to satisfy the future demands. Here, a newly designed polystyrene-block-poly(3-hexylthiophene) (PS-b-P3HT) block copolymer was presented. Instead of the traditional synthetic methods, the supramolecular methodology was utilized to construct a novel type of diblock copolymer, which could shorten the synthesis time. The PS-b-P3HT-based thin film transistors showed comparable electrical performance to P3HT-based ones, with mobility up to 10^−2 cm^2 V^−1 s^−1. Furthermore, atomic force microscopy (AFM) and 2D grazing incidence X-ray diffraction (2D-GIXD) analysis were conducted to deeply look into surface morphology and molecular orientation, respectively. The block copolymer thin films also demonstrated better stretchability contrasted with pristine P3HT thin films during stress-strain test. The results revealed the practicality of this unique block copolymer containing metal-ligand coordination and the potential in future wearable electronics applications.
關鍵字(中) ★ 嵌段高分子
★ 高分子半導體
★ 金屬-超分子
★ 可拉伸式電子元件
★ 有機場效應電晶體
關鍵字(英) ★ block copolymer
★ polymer semiconductor
★ metallo-supramolecule
★ stretchable electronics
★ organic field-effect transistor
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 x
一、緒論 1
1-1 前言 1
1-2 有機場效應電晶體 2
1-3 有機半導體之溶液製程 8
1-4 軟性有機電晶體分子設計 15
1-5 有機高分子半導體元件性能優化 27
1-6 研究動機 32
二、實驗方法 33
2-1 實驗藥品 33
2-2 實驗設備與裝置 35
2-3 實驗步驟 38
三、結果與討論 41
3-1 有機高分子半導體材料性質分析 41
3-2 軟性有機高分子薄膜性質鑑定及拉伸元件性能分析 45
四、結論與未來展望 57
五、參考文獻 59
附錄 67
參考文獻 1. Tsumura, A.; Koezuka, H.; Ando, T., Macromolecular Electronic Device: Field‐Effect Transistor with a Polythiophene Thin Film. Appl. Phys. Lett. 1986, 49 (18), 1210-1212.
2. Casalini, S.; Bortolotti, C. A.; Leonardi, F.; Biscarini, F., Self-Assembled Monolayers in Organic Electronics. Chem. Soc. Rev. 2017, 46 (1), 40-71.
3. Chen, H.; Zhang, W.; Li, M.; He, G.; Guo, X., Interface Engineering in Organic Field-Effect Transistors: Principles, Applications, and Perspectives. Chem. Rev. 2020, 120 (5), 2879-2949.
4. Facchetti, A., Semiconductors for Organic Transistors. Mater. Today 2007, 10 (3), 28-37.
5. Zaumseil, J.; Sirringhaus, H., Electron and Ambipolar Transport in Organic Field-Effect Transistors. Chem. Rev. 2007, 107 (4), 1296-1323.
6. Diao, Y.; Shaw, L.; Bao, Z.; Mannsfeld, S. C. B., Morphology Control Strategies for Solution-Processed Organic Semiconductor Thin Films. Energy Environ. Sci. 2014, 7 (7), 2145-2159.
7. Kim, D. H.; Lee, D. Y.; Lee, H. S.; Lee, W. H.; Kim, Y. H.; Han, J. I.; Cho, K., High-Mobility Organic Transistors Based on Single-Crystalline Microribbons of Triisopropylsilylethynyl Pentacene Via Solution-Phase Self-Assembly. Adv. Mater. 2007, 19 (5), 678-682.
8. Lee, W. H.; Kim, D. H.; Jang, Y.; Cho, J. H.; Hwang, M.; Park, Y. D.; Kim, Y. H.; Han, J. I.; Cho, K., Solution-Processable Pentacene Microcrystal Arrays for High Performance Organic Field-Effect Transistors. Appl. Phys. Lett. 2007, 90 (13), 132106.
9. Li, H.; Tee, B. C. K.; Cha, J. J.; Cui, Y.; Chung, J. W.; Lee, S. Y.; Bao, Z., High-Mobility Field-Effect Transistors from Large-Area Solution-Grown Aligned C60 Single Crystals. J. Am. Chem. Soc. 2012, 134 (5), 2760-2765.
10. Yuan, Y.; Giri, G.; Ayzner, A. L.; Zoombelt, A. P.; Mannsfeld, S. C. B.; Chen, J.; Nordlund, D.; Toney, M. F.; Huang, J.; Bao, Z., Ultra-High Mobility Transparent Organic Thin Film Transistors Grown by an Off-Centre Spin-Coating Method. Nat. Commun. 2014, 5 (1), 3005.
11. Lin, F.-J.; Guo, C.; Chuang, W.-T.; Wang, C.-L.; Wang, Q.; Liu, H.; Hsu, C.-S.; Jiang, L., Directional Solution Coating by the Chinese Brush: A Facile Approach to Improving Molecular Alignment for High-Performance Polymer Tfts. Adv. Mater. 2017, 29 (34), 1606987.
12. Chung, S.; Cho, K.; Lee, T., Recent Progress in Inkjet-Printed Thin-Film Transistors. Adv. Sci. 2019, 6 (6), 1801445.
13. Lu, Z.; Wang, C.; Deng, W.; Achille, M. T.; Jie, J.; Zhang, X., Meniscus-Guided Coating of Organic Crystalline Thin Films for High-Performance Organic Field-Effect Transistors. J. Mater. Chem. C 2020, 8 (27), 9133-9146.
14. Xu, J.; Wu, H.-C.; Zhu, C.; Ehrlich, A.; Shaw, L.; Nikolka, M.; Wang, S.; Molina-Lopez, F.; Gu, X.; Luo, S.; Zhou, D.; Kim, Y.-H.; Wang, G.-J. N.; Gu, K.; Feig, V. R.; Chen, S.; Kim, Y.; Katsumata, T.; Zheng, Y.-Q.; Yan, H.; Chung, J. W.; Lopez, J.; Murmann, B.; Bao, Z., Multi-Scale Ordering in Highly Stretchable Polymer Semiconducting Films. Nature Mater. 2019, 18 (6), 594-601.
15. Zhao, W.; Jie, J.; Wei, Q.; Lu, Z.; Jia, R.; Deng, W.; Zhang, X.; Zhang, X., A Facile Method for the Growth of Organic Semiconductor Single Crystal Arrays on Polymer Dielectric toward Flexible Field-Effect Transistors. Adv. Funct. Mater. 2019, 29 (32), 1902494.
16. Diao, Y.; Tee, B. C. K.; Giri, G.; Xu, J.; Kim, D. H.; Becerril, H. A.; Stoltenberg, R. M.; Lee, T. H.; Xue, G.; Mannsfeld, S. C. B.; Bao, Z., Solution Coating of Large-Area Organic Semiconductor Thin Films with Aligned Single-Crystalline Domains. Nature Mater. 2013, 12 (7), 665-671.
17. Zheng, Y.; Ashizawa, M.; Zhang, S.; Kang, J.; Nikzad, S.; Yu, Z.; Ochiai, Y.; Wu, H.-C.; Tran, H.; Mun, J.; Zheng, Y.-Q.; Tok, J. B. H.; Gu, X.; Bao, Z., Tuning the Mechanical Properties of a Polymer Semiconductor by Modulating Hydrogen Bonding Interactions. Chem. Mater. 2020, 32 (13), 5700-5714.
18. Yang, Y.; Liu, Z.; Zhang, G.; Zhang, X.; Zhang, D., The Effects of Side Chains on the Charge Mobilities and Functionalities of Semiconducting Conjugated Polymers Beyond Solubilities. Adv. Mater. 2019, 31 (46), 1903104.
19. Wu, H.-C.; Hung, C.-C.; Hong, C.-W.; Sun, H.-S.; Wang, J.-T.; Yamashita, G.; Higashihara, T.; Chen, W.-C., Isoindigo-Based Semiconducting Polymers Using Carbosilane Side Chains for High Performance Stretchable Field-Effect Transistors. Macromolecules 2016, 49 (22), 8540-8548.
20. Lin, Y.-C.; Chen, F.-H.; Chiang, Y.-C.; Chueh, C.-C.; Chen, W.-C., Asymmetric Side-Chain Engineering of Isoindigo-Based Polymers for Improved Stretchability and Applications in Field-Effect Transistors. ACS Appl. Mater. Interfaces 2019, 11 (37), 34158-34170.
21. Chiang, Y.-C.; Wu, H.-C.; Wen, H.-F.; Hung, C.-C.; Hong, C.-W.; Kuo, C.-C.; Higashihara, T.; Chen, W.-C., Tailoring Carbosilane Side Chains toward Intrinsically Stretchable Semiconducting Polymers. Macromolecules 2019, 52 (11), 4396-4404.
22. Wen, H.-F.; Wu, H.-C.; Aimi, J.; Hung, C.-C.; Chiang, Y.-C.; Kuo, C.-C.; Chen, W.-C., Soft Poly(Butyl Acrylate) Side Chains toward Intrinsically Stretchable Polymeric Semiconductors for Field-Effect Transistor Applications. Macromolecules 2017, 50 (13), 4982-4992.
23. Lin, Y.-C.; Shih, C.-C.; Chiang, Y.-C.; Chen, C.-K.; Chen, W.-C., Intrinsically Stretchable Isoindigo–Bithiophene Conjugated Copolymers Using Poly(Acrylate Amide) Side Chains for Organic Field-Effect Transistors. Polym. Chem. 2019, 10 (38), 5172-5183.
24. Lin, Y.-C.; Chen, C.-K.; Chiang, Y.-C.; Hung, C.-C.; Fu, M.-C.; Inagaki, S.; Chueh, C.-C.; Higashihara, T.; Chen, W.-C., Study on Intrinsic Stretchability of Diketopyrrolopyrrole-Based Π-Conjugated Copolymers with Poly(Acryl Amide) Side Chains for Organic Field-Effect Transistors. ACS Appl. Mater. Interfaces 2020, 12 (29), 33014-33027.
25. Huang, Y.-W.; Lin, Y.-C.; Yen, H.-C.; Chen, C.-K.; Lee, W.-Y.; Chen, W.-C.; Chueh, C.-C., High Mobility Preservation of near Amorphous Conjugated Polymers in the Stretched States Enabled by Biaxially-Extended Conjugated Side-Chain Design. Chem. Mater. 2020, 32 (17), 7370-7382.
26. Koch, F. P. V.; Rivnay, J.; Foster, S.; Müller, C.; Downing, J. M.; Buchaca-Domingo, E.; Westacott, P.; Yu, L.; Yuan, M.; Baklar, M.; Fei, Z.; Luscombe, C.; McLachlan, M. A.; Heeney, M.; Rumbles, G.; Silva, C.; Salleo, A.; Nelson, J.; Smith, P.; Stingelin, N., The Impact of Molecular Weight on Microstructure and Charge Transport in Semicrystalline Polymer Semiconductors–Poly(3-Hexylthiophene), a Model Study. Prog. Polym. Sci. 2013, 38 (12), 1978-1989.
27. Rodriquez, D.; Kim, J.-H.; Root, S. E.; Fei, Z.; Boufflet, P.; Heeney, M.; Kim, T.-S.; Lipomi, D. J., Comparison of Methods for Determining the Mechanical Properties of Semiconducting Polymer Films for Stretchable Electronics. ACS Appl. Mater. Interfaces 2017, 9 (10), 8855-8862.
28. Ashizawa, M.; Zheng, Y.; Tran, H.; Bao, Z., Intrinsically Stretchable Conjugated Polymer Semiconductors in Field Effect Transistors. Prog. Polym. Sci. 2020, 100, 101181.
29. Oh, J. Y.; Rondeau-Gagné, S.; Chiu, Y.-C.; Chortos, A.; Lissel, F.; Wang, G.-J. N.; Schroeder, B. C.; Kurosawa, T.; Lopez, J.; Katsumata, T.; Xu, J.; Zhu, C.; Gu, X.; Bae, W.-G.; Kim, Y.; Jin, L.; Chung, J. W.; Tok, J. B. H.; Bao, Z., Intrinsically Stretchable and Healable Semiconducting Polymer for Organic Transistors. Nature 2016, 539 (7629), 411-415.
30. Mun, J.; Wang, G.-J. N.; Oh, J. Y.; Katsumata, T.; Lee, F. L.; Kang, J.; Wu, H.-C.; Lissel, F.; Rondeau-Gagné, S.; Tok, J. B. H.; Bao, Z., Effect of Nonconjugated Spacers on Mechanical Properties of Semiconducting Polymers for Stretchable Transistors. Adv. Funct. Mater. 2018, 28 (43), 1804222.
31. Oh, J. Y.; Son, D.; Katsumata, T.; Lee, Y.; Kim, Y.; Lopez, J.; Wu, H.-C.; Kang, J.; Park, J.; Gu, X.; Mun, J.; Wang, N. G.-J.; Yin, Y.; Cai, W.; Yun, Y.; Tok, J. B. H.; Bao, Z., Stretchable Self-Healable Semiconducting Polymer Film for Active-Matrix Strain-Sensing Array. Sci. Adv. 2019, 5 (11), eaav3097.
32. Wu, H.-C.; Lissel, F.; Wang, G.-J. N.; Koshy, D. M.; Nikzad, S.; Yan, H.; Xu, J.; Luo, S.; Matsuhisa, N.; Cheng, Y.; Wang, F.; Ji, B.; Li, D.; Chen, W.-C.; Xue, G.; Bao, Z., Metal–Ligand Based Mechanophores Enhance Both Mechanical Robustness and Electronic Performance of Polymer Semiconductors. Adv. Funct. Mater. 2021, 31 (11), 2009201.
33. Li, Y.; Tatum, W. K.; Onorato, J. W.; Zhang, Y.; Luscombe, C. K., Low Elastic Modulus and High Charge Mobility of Low-Crystallinity Indacenodithiophene-Based Semiconducting Polymers for Potential Applications in Stretchable Electronics. Macromolecules 2018, 51 (16), 6352-6358.
34. Zheng, Y.; Wang, G.-J. N.; Kang, J.; Nikolka, M.; Wu, H.-C.; Tran, H.; Zhang, S.; Yan, H.; Chen, H.; Yuen, P. Y.; Mun, J.; Dauskardt, R. H.; McCulloch, I.; Tok, J. B. H.; Gu, X.; Bao, Z., An Intrinsically Stretchable High-Performance Polymer Semiconductor with Low Crystallinity. Adv. Funct. Mater. 2019, 29 (46), 1905340.
35. Mun, J.; Kang, J.; Zheng, Y.; Luo, S.; Wu, H.-C.; Matsuhisa, N.; Xu, J.; Wang, G.-J. N.; Yun, Y.; Xue, G.; Tok, J. B. H.; Bao, Z., Conjugated Carbon Cyclic Nanorings as Additives for Intrinsically Stretchable Semiconducting Polymers. Adv. Mater. 2019, 31 (42), 1903912.
36. Mun, J.; Kang, J.; Zheng, Y.; Luo, S.; Wu, Y.; Gong, H.; Lai, J.-C.; Wu, H.-C.; Xue, G.; Tok, J. B. H.; Bao, Z., F4-Tcnq as an Additive to Impart Stretchable Semiconductors with High Mobility and Stability. Adv. Electron. Mater. 2020, 6 (6), 2000251.
37. Wang, G.-J. N.; Shaw, L.; Xu, J.; Kurosawa, T.; Schroeder, B. C.; Oh, J. Y.; Benight, S. J.; Bao, Z., Inducing Elasticity through Oligo-Siloxane Crosslinks for Intrinsically Stretchable Semiconducting Polymers. Adv. Funct. Mater. 2016, 26 (40), 7254-7262.
38. Wang, G.-J. N.; Zheng, Y.; Zhang, S.; Kang, J.; Wu, H.-C.; Gasperini, A.; Zhang, H.; Gu, X.; Bao, Z., Tuning the Cross-Linker Crystallinity of a Stretchable Polymer Semiconductor. Chem. Mater. 2019, 31 (17), 6465-6475.
39. Selivanova, M.; Zhang, S.; Billet, B.; Malik, A.; Prine, N.; Landry, E.; Gu, X.; Xiang, P.; Rondeau-Gagné, S., Branched Polyethylene as a Plasticizing Additive to Modulate the Mechanical Properties of Π-Conjugated Polymers. Macromolecules 2019, 52 (20), 7870-7877.
40. Choi, D.; Kim, H.; Persson, N.; Chu, P.-H.; Chang, M.; Kang, J.-H.; Graham, S.; Reichmanis, E., Elastomer–Polymer Semiconductor Blends for High-Performance Stretchable Charge Transport Networks. Chem. Mater. 2016, 28 (4), 1196-1204.
41. Zhang, G.; McBride, M.; Persson, N.; Lee, S.; Dunn, T. J.; Toney, M. F.; Yuan, Z.; Kwon, Y.-H.; Chu, P.-H.; Risteen, B.; Reichmanis, E., Versatile Interpenetrating Polymer Network Approach to Robust Stretchable Electronic Devices. Chem. Mater. 2017, 29 (18), 7645-7652.
42. Xu, J.; Wang, S.; Wang, G.-J. N.; Zhu, C.; Luo, S.; Jin, L.; Gu, X.; Chen, S.; Feig, V. R.; To, J. W. F.; Rondeau-Gagné, S.; Park, J.; Schroeder, B. C.; Lu, C.; Oh, J. Y.; Wang, Y.; Kim, Y.-H.; Yan, H.; Sinclair, R.; Zhou, D.; Xue, G.; Murmann, B.; Linder, C.; Cai, W.; Tok, J. B. H.; Chung, J. W.; Bao, Z., Highly Stretchable Polymer Semiconductor Films through the Nanoconfinement Effect. Science 2017, 355 (6320), 59.
43. Zhang, S.; Cheng, Y.-H.; Galuska, L.; Roy, A.; Lorenz, M.; Chen, B.; Luo, S.; Li, Y.-T.; Hung, C.-C.; Qian, Z.; St. Onge, P. B. J.; Mason, G. T.; Cowen, L.; Zhou, D.; Nazarenko, S. I.; Storey, R. F.; Schroeder, B. C.; Rondeau-Gagné, S.; Chiu, Y.-C.; Gu, X., Tacky Elastomers to Enable Tear-Resistant and Autonomous Self-Healing Semiconductor Composites. Adv. Funct. Mater. 2020, 30 (27), 2000663.
44. Qiu, L.; Lim, J. A.; Wang, X.; Lee, W. H.; Hwang, M.; Cho, K., Versatile Use of Vertical-Phase-Separation-Induced Bilayer Structures in Organic Thin-Film Transistors. Adv. Mater. 2008, 20 (6), 1141-1145.
45. Hou, S.; Yu, J.; Zhuang, X.; Li, D.; Liu, Y.; Gao, Z.; Sun, T.; Wang, F.; Yu, X., Phase Separation of P3ht/Pmma Blend Film for Forming Semiconducting and Dielectric Layers in Organic Thin-Film Transistors for High-Sensitivity No2 Detection. ACS Appl. Mater. Interfaces 2019, 11 (47), 44521-44527.
46. Qiu, L.; Wang, X.; Lee, W. H.; Lim, J. A.; Kim, J. S.; Kwak, D.; Cho, K., Organic Thin-Film Transistors Based on Blends of Poly(3-Hexylthiophene) and Polystyrene with a Solubility-Induced Low Percolation Threshold. Chem. Mater. 2009, 21 (19), 4380-4386.
47. Han, S.; Yu, X.; Shi, W.; Zhuang, X.; Yu, J., Solvent-Dependent Electrical Properties Improvement of Organic Field-Effect Transistor Based on Disordered Conjugated Polymer/Insulator Blends. Org. Electron. 2015, 27, 160-166.
48. Zaumseil, J., P3ht and Other Polythiophene Field-Effect Transistors. In P3ht Revisited – from Molecular Scale to Solar Cell Devices, Ludwigs, S., Ed. Springer Berlin Heidelberg: Berlin, Heidelberg, 2014; pp 107-137.
49. Lee, M.; Cho, B.-K.; Zin, W.-C., Supramolecular Structures from Rod−Coil Block Copolymers. Chem. Rev. 2001, 101 (12), 3869-3892.
50. Klok, H. A.; Lecommandoux, S., Supramolecular Materials Via Block Copolymer Self-Assembly. Adv. Mater. 2001, 13 (16), 1217-1229.
51. Mai, Y.; Eisenberg, A., Self-Assembly of Block Copolymers. Chem. Soc. Rev. 2012, 41 (18), 5969-5985.
52. Müller, C.; Goffri, S.; Breiby, D. W.; Andreasen, J. W.; Chanzy, H. D.; Janssen, R. A. J.; Nielsen, M. M.; Radano, C. P.; Sirringhaus, H.; Smith, P.; Stingelin-Stutzmann, N., Tough, Semiconducting Polyethylene-Poly(3-Hexylthiophene) Diblock Copolymers. Adv. Funct. Mater. 2007, 17 (15), 2674-2679.
53. Surin, M.; Coulembier, O.; Tran, K.; Winter, J. D.; Leclère, P.; Gerbaux, P.; Lazzaroni, R.; Dubois, P., Regioregular Poly(3-Hexylthiophene)-Poly(Ε-Caprolactone) Block Copolymers: Controlled Synthesis, Microscopic Morphology, and Charge Transport Properties. Org. Electron. 2010, 11 (5), 767-774.
54. Yu, X.; Xiao, K.; Chen, J.; Lavrik, N. V.; Hong, K.; Sumpter, B. G.; Geohegan, D. B., High-Performance Field-Effect Transistors Based on Polystyrene-B-Poly(3-Hexylthiophene) Diblock Copolymers. ACS Nano 2011, 5 (5), 3559-3567.
55. Lee, J.-Y.; Lin, C.-J.; Lo, C.-T.; Tsai, J.-C.; Chen, W.-C., Synthesis, Morphology, and Field-Effect Transistor Characteristics of Crystalline Diblock Copolymers Consisted of Poly(3-Hexylthiophene) and Syndiotactic Polypropylene. Macromolecules 2013, 46 (8), 3005-3014.
56. Peng, R.; Pang, B.; Hu, D.; Chen, M.; Zhang, G.; Wang, X.; Lu, H.; Cho, K.; Qiu, L., An Aba Triblock Copolymer Strategy for Intrinsically Stretchable Semiconductors. J. Mater. Chem. C 2015, 3 (15), 3599-3606.
57. Wang, J.-T.; Takshima, S.; Wu, H.-C.; Shih, C.-C.; Isono, T.; Kakuchi, T.; Satoh, T.; Chen, W.-C., Stretchable Conjugated Rod–Coil Poly(3-Hexylthiophene)-Block-Poly(Butyl Acrylate) Thin Films for Field Effect Transistor Applications. Macromolecules 2017, 50 (4), 1442-1452.
58. Sugiyama, F.; Kleinschmidt, A. T.; Kayser, L. V.; Alkhadra, M. A.; Wan, J. M. H.; Chiang, A. S. C.; Rodriquez, D.; Root, S. E.; Savagatrup, S.; Lipomi, D. J., Stretchable and Degradable Semiconducting Block Copolymers. Macromolecules 2018, 51 (15), 5944-5949.
59. Hsieh, H.-C.; Hung, C.-C.; Watanabe, K.; Chen, J.-Y.; Chiu, Y.-C.; Isono, T.; Chiang, Y.-C.; Reghu, R. R.; Satoh, T.; Chen, W.-C., Unraveling the Stress Effects on the Optical Properties of Stretchable Rod-Coil Polyfluorene-Poly(N-Butyl Acrylate) Block Copolymer Thin Films. Polym. Chem. 2018, 9 (27), 3820-3831.
60. Ge, F.; Liu, Z.; Tian, F.; Du, Y.; Liu, L.; Wang, X.; Lu, H.; Wu, Z.; Zhang, G.; Qiu, L., One-Pot Synthesized Aba Tri-Block Copolymers for High-Performance Organic Field-Effect Transistors. Polym. Chem. 2018, 9 (36), 4517-4522.
61. Higashihara, T.; Fukuta, S.; Ochiai, Y.; Sekine, T.; Chino, K.; Koganezawa, T.; Osaka, I., Synthesis and Deformable Hierarchical Nanostructure of Intrinsically Stretchable Aba Triblock Copolymer Composed of Poly(3-Hexylthiophene) and Polyisobutylene Segments. ACS Appl. Polym. Mater. 2019, 1 (3), 315-320.
62. Hsu, L.-C.; Kobayashi, S.; Isono, T.; Chiang, Y.-C.; Ree, B. J.; Satoh, T.; Chen, W.-C., Highly Stretchable Semiconducting Polymers for Field-Effect Transistors through Branched Soft–Hard–Soft Type Triblock Copolymers. Macromolecules 2020, 53 (17), 7496-7510.
63. Burnworth, M.; Tang, L.; Kumpfer, J. R.; Duncan, A. J.; Beyer, F. L.; Fiore, G. L.; Rowan, S. J.; Weder, C., Optically Healable Supramolecular Polymers. Nature 2011, 472 (7343), 334-337.
64. Mozhdehi, D.; Ayala, S.; Cromwell, O. R.; Guan, Z., Self-Healing Multiphase Polymers Via Dynamic Metal–Ligand Interactions. J. Am. Chem. Soc. 2014, 136 (46), 16128-16131.
65. Hu, X.; Vatankhah-Varnoosfaderani, M.; Zhou, J.; Li, Q.; Sheiko, S. S., Weak Hydrogen Bonding Enables Hard, Strong, Tough, and Elastic Hydrogels. Adv. Mater. 2015, 27 (43), 6899-6905.
66. Zhang, G.; Lv, L.; Deng, Y.; Wang, C., Self-Healing Gelatin Hydrogels Cross-Linked by Combining Multiple Hydrogen Bonding and Ionic Coordination. Macromol. Rapid Commun. 2017, 38 (12), 1700018.
67. Yang, Y.; Urban, M. W., Self-Healing of Polymers Via Supramolecular Chemistry. Adv. Mater. Interfaces 2018, 5 (17), 1800384.
68. Li, C.-H.; Zuo, J.-L., Self-Healing Polymers Based on Coordination Bonds. Adv. Mater. 2020, 32 (27), 1903762.
69. Wolf, M. O., Transition-Metal–Polythiophene Hybrid Materials. Adv. Mater. 2001, 13 (8), 545-553.
70. Bielecka, U.; Lutsyk, P.; Janus, K.; Sworakowski, J.; Bartkowiak, W., Effect of Solution Aging on Morphology and Electrical Characteristics of Regioregular P3ht Fets Fabricated by Spin Coating and Spray Coating. Org. Electron. 2011, 12 (11), 1768-1776.
71. Janasz, L.; Chlebosz, D.; Gradzka, M.; Zajaczkowski, W.; Marszalek, T.; Müllen, K.; Ulanski, J.; Kiersnowski, A.; Pisula, W., Improved Charge Carrier Transport in Ultrathin Poly(3-Hexylthiophene) Films Via Solution Aggregation. J. Mater. Chem. C 2016, 4 (48), 11488-11498.
72. Chang, M.; Lee, J.; Kleinhenz, N.; Fu, B.; Reichmanis, E., Photoinduced Anisotropic Supramolecular Assembly and Enhanced Charge Transport of Poly(3-Hexylthiophene) Thin Films. Adv. Funct. Mater. 2014, 24 (28), 4457-4465.
73. Chang, M.; Choi, D.; Fu, B.; Reichmanis, E., Solvent Based Hydrogen Bonding: Impact on Poly(3-Hexylthiophene) Nanoscale Morphology and Charge Transport Characteristics. ACS Nano 2013, 7 (6), 5402-5413.
74. Na, J. Y.; Kim, M.; Park, Y. D., Solution Processing with a Good Solvent Additive for Highly Reliable Organic Thin-Film Transistors. J. Phys. Chem. C 2017, 121 (25), 13930-13937.
75. Jeong, J. W.; Jo, G.; Choi, S.; Kim, Y. A.; Yoon, H.; Ryu, S.-W.; Jung, J.; Chang, M., Solvent Additive-Assisted Anisotropic Assembly and Enhanced Charge Transport of Π-Conjugated Polymer Thin Films. ACS Appl. Mater. Interfaces 2018, 10 (21), 18131-18140.
76. Chang, J.-F.; Sun, B.; Breiby, D. W.; Nielsen, M. M.; Sölling, T. I.; Giles, M.; McCulloch, I.; Sirringhaus, H., Enhanced Mobility of Poly(3-Hexylthiophene) Transistors by Spin-Coating from High-Boiling-Point Solvents. Chem. Mater. 2004, 16 (23), 4772-4776.
77. Ferdous, S.; Liu, F.; Wang, D.; Russell, T. P., Solvent-Polarity-Induced Active Layer Morphology Control in Crystalline Diketopyrrolopyrrole-Based Low Band Gap Polymer Photovoltaics. Adv. Energy Mater. 2014, 4 (2), 1300834.
78. Noriega, R.; Rivnay, J.; Vandewal, K.; Koch, F. P. V.; Stingelin, N.; Smith, P.; Toney, M. F.; Salleo, A., A General Relationship between Disorder, Aggregation and Charge Transport in Conjugated Polymers. Nature Mater. 2013, 12 (11), 1038-1044.
79. Shaw, L.; Yan, H.; Gu, X.; Hayoz, P.; Weitz, R. T.; Kaelblein, D.; Toney, M. F.; Bao, Z., Microstructural Evolution of the Thin Films of a Donor–Acceptor Semiconducting Polymer Deposited by Meniscus-Guided Coating. Macromolecules 2018, 51 (11), 4325-4340.
80. Su, Y.-W.; Lin, Y.-C.; Wei, K.-H., Evolving Molecular Architectures of Donor–Acceptor Conjugated Polymers for Photovoltaic Applications: From One-Dimensional to Branched to Two-Dimensional Structures. J. Mater. Chem. A 2017, 5 (46), 24051-24075.
81. Spano, F. C.; Silva, C., H- and J-Aggregate Behavior in Polymeric Semiconductors. Annu. Rev. Phys. Chem. 2014, 65 (1), 477-500.
指導教授 李岱洲(Tai-Chou Lee) 審核日期 2021-8-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明