參考文獻 |
[1] M.C. Costa, G.G. Parra, D.R. Larrude, G.J. Fechine, Screening effect of CVD graphene on the surface free energy of substrates, Physical Chemistry Chemical Physics 22(29) (2020) 16672-16680.
[2] J. Feng, Z. Guo, Wettability of graphene: from influencing factors and reversible conversions to potential applications, Nanoscale Horizons 4(2) (2019) 339-364.
[3] M.R. Fries, D. Stopper, M.W. Skoda, M. Blum, C. Kertzscher, A. Hinderhofer, F. Zhang, R.M. Jacobs, R. Roth, F. Schreiber, Enhanced protein adsorption upon bulk phase separation, Scientific reports 10(1) (2020) 1-9.
[4] J. Ghitman, E.I. Biru, E. Cojocaru, G.G. Pircalabioru, E. Vasile, H. Iovu, Design of new bioinspired GO-COOH decorated alginate/gelatin hybrid scaffolds with nanofibrous architecture: Structural, mechanical and biological investigations, RSC Advances 11(22) (2021) 13653-13665.
[5] A. Khan, M.R. Habib, R.R. Kumar, S.M. Islam, V. Arivazhagan, M. Salman, D. Yang, X. Yu, Wetting behaviors and applications of metal-catalyzed CVD grown graphene, Journal of Materials Chemistry A 6(45) (2018) 22437-22464.
[6] A. Pietrikova, P. Lukacs, D. Jakubeczyova, B. Ballokova, J. Potencki, G. Tomaszewski, J. Pekarek, K. Prikrylova, M. Fides, Surface analysis of polymeric substrates used for inkjet printing technology, Circuit World (2016).
[7] P.-G. De Gennes, Wetting: statics and dynamics, Reviews of modern physics 57(3) (1985) 827.
[8] M.N. Popescu, G. Oshanin, S. Dietrich, A. Cazabat, Precursor films in wetting phenomena, Journal of Physics: Condensed Matter 24(24) (2012) 243102.
[9] Y.-H. Weng, C.-J. Wu, H.-K. Tsao, Y.-J. Sheng, Spreading dynamics of a precursor film of nanodrops on total wetting surfaces, Physical Chemistry Chemical Physics 19(40) (2017) 27786-27794.
[10] C.-J. Wu, C.-J. Huang, S. Jiang, Y.-J. Sheng, H.-K. Tsao, Superhydrophilicity and spontaneous spreading on zwitterionic surfaces: carboxybetaine and sulfobetaine, RSC advances 6(30) (2016) 24827-24834.
[11] G. He, N. Hadjiconstantinou, A molecular view of Tanner′s law: molecular dynamics simulations of droplet spreading, Journal of Fluid Mechanics 497 (2003) 123-132.
[12] M.D. Lelah, A. Marmur, Spreading kinetics of drops on glass, Journal of Colloid and Interface Science 82(2) (1981) 518-525.
[13] S. Rafaï, D. Bonn, A. Boudaoud, Spreading of non-Newtonian fluids on hydrophilic surfaces, Journal of Fluid Mechanics 513 (2004) 77-85.
[14] L. Tanner, The spreading of silicone oil drops on horizontal surfaces, Journal of Physics D: Applied Physics 12(9) (1979) 1473.
[15] Y. Yuan, T.R. Lee, Contact angle and wetting properties, Surface science techniques, Springer2013, pp. 3-34.
[16] Y.-T. Cheng, K.-C. Chu, H.-K. Tsao, Y.-J. Sheng, Size-dependent behavior and failure of young’s equation for wetting of two-component nanodroplets, Journal of Colloid and Interface Science 578 (2020) 69-76.
[17] F. Brochard-Wyart, R. Fondecave, M. Boudoussier, Wetting of antagonist mixtures: theleak out′transition, International Journal of Engineering Science 38(9-10) (2000) 1033-1047.
[18] R. Fondecave, F. Brochard-Wyart, Application of statistical mechanics to the wetting of complex liquids, Physica A: Statistical Mechanics and its Applications 274(1-2) (1999) 19-29.
[19] R. Fondecave, F.B. Wyart, Wetting laws for polymer solutions, EPL (Europhysics Letters) 37(2) (1997) 115.
[20] M. Boudoussier, Dry spreading of polymer solutions, Journal de Physique 48(3) (1987) 445-455.
[21] P. Espanol, P. Warren, Statistical mechanics of dissipative particle dynamics, EPL (Europhysics Letters) 30(4) (1995) 191.
[22] R.D. Groot, P.B. Warren, Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation, The Journal of chemical physics 107(11) (1997) 4423-4435.
[23] P. Hoogerbrugge, J. Koelman, Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics, EPL (Europhysics Letters) 19(3) (1992) 155.
[24] H.-C. Tsai, Y.-L. Yang, Y.-J. Sheng, H.-K. Tsao, Formation of asymmetric and symmetric hybrid membranes of lipids and triblock copolymers, Polymers 12(3) (2020) 639.
[25] Y.-L. Yang, M.-Y. Chen, H.-K. Tsao, Y.-J. Sheng, Dynamics of bridge–loop transformation in a membrane with mixed monolayer/bilayer structures, Physical Chemistry Chemical Physics 20(9) (2018) 6582-6590.
[26] Y.-L. Yang, Y.-J. Sheng, H.-K. Tsao, Hybridization of lipids to monolayer and bilayer membranes of triblock copolymers, Journal of colloid and interface science 544 (2019) 53-60.
[27] Y.-L. Yang, H.-K. Tsao, Y.-J. Sheng, Morphology and Wetting Stability of Nanofilms of ABC Miktoarm Star Terpolymers, Macromolecules 53(2) (2020) 594-601.
[28] P. Warren, Vapor-liquid coexistence in many-body dissipative particle dynamics, Physical Review E 68(6) (2003) 066702.
[29] M. Arienti, W. Pan, X. Li, G. Karniadakis, Many-body dissipative particle dynamics simulation of liquid/vapor and liquid/solid interactions, The Journal of chemical physics 134(20) (2011) 204114.
[30] A. Ghoufi, J. Emile, P. Malfreyt, Recent advances in many body dissipative particles dynamics simulations of liquid-vapor interfaces, The European Physical Journal E 36(1) (2013) 1-12.
[31] K.-C. Chu, S.-W. Hu, H.-K. Tsao, Y.-J. Sheng, Strong competition between adsorption and aggregation of surfactant in nanoscale systems, Journal of colloid and interface science 553 (2019) 674-681.
[32] K.-C. Chu, H.-K. Tsao, Y.-J. Sheng, Penetration dynamics through nanometer-scale hydrophilic capillaries: Beyond Washburn’s equation and extended menisci, Journal of colloid and interface science 538 (2019) 340-348.
[33] K.-C. Chu, H.-K. Tsao, Y.-J. Sheng, Pressure-gated capillary nanovalves based on liquid nanofilms, Journal of colloid and interface science 560 (2020) 485-491.
[34] C. Chen, C. Gao, L. Zhuang, X. Li, P. Wu, J. Dong, J. Lu, A many-body dissipative particle dynamics study of spontaneous capillary imbibition and drainage, Langmuir 26(12) (2010) 9533-9538.
[35] C. Chen, L. Zhuang, X. Li, J. Dong, J. Lu, A many-body dissipative particle dynamics study of forced water–oil displacement in capillary, Langmuir 28(2) (2012) 1330-1336.
[36] P.B. Warren, No-go theorem in many-body dissipative particle dynamics, Physical Review E 87(4) (2013) 045303.
[37] P.J. Flory, Principles of polymer chemistry, Cornell university press1953.
[38] S. Jamali, A. Boromand, S. Khani, J. Wagner, M. Yamanoi, J. Maia, Generalized mapping of multi-body dissipative particle dynamics onto fluid compressibility and the Flory-Huggins theory, The Journal of chemical physics 142(16) (2015) 164902.
[39] R.W. Zwanzig, High‐temperature equation of state by a perturbation method. I. Nonpolar gases, The Journal of Chemical Physics 22(8) (1954) 1420-1426.
[40] K. Bansal, U.S. Baghel, S. Thakral, Construction and validation of binary phase diagram for amorphous solid dispersion using Flory–Huggins theory, AAPS PharmSciTech 17(2) (2016) 318-327.
[41] D. Ausserré, A. Picard, L. Léger, Existence and role of the precursor film in the spreading of polymer liquids, Physical review letters 57(21) (1986) 2671.
[42] L. Leger, M. Erman, A. Guinet-Picard, D. Ausserre, C. Strazielle, Precursor film profiles of spreading liquid drops, Physical review letters 60(23) (1988) 2390.
[43] K. Hirose, T. Konisho, I. Ueno, Existing length of precursor film on inclined solid substrate, Microgravity Science and Technology 19(3) (2007) 81-83.
[44] W.-J. Liao, K.-C. Chu, Y.-H. Tsao, H.-K. Tsao, Y.-J. Sheng, Size-dependence and interfacial segregation in nanofilms and nanodroplets of homologous polymer blends, Physical Chemistry Chemical Physics 22(38) (2020) 21801-21808. |