博碩士論文 108324023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.144.90.217
姓名 張式鈺(Shih-Yu Chang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 鄰乙氧苯甲醯胺和2–氯–4–硝基苯甲酸於超臨界二氧化碳中之溶解度量測
相關論文
★ 預測固體溶質於超臨界二氧化碳添加共溶劑系統之溶解度★ 碳酸二乙酯與低碳醇類於常壓下之汽液相平衡
★ 探討Peng-Robinson+COSMOSAC狀態方程式中分散項與溫度之關係★ 探討分散項之溫度函數與體積參數之修正對PR+COSMOSAC於相平衡預測之影響
★ 預測有機物與二氧化碳雙成份系統之固液氣三相平衡★ 常壓下乙酸酯類之雙成份混合物汽液相平衡
★ 以第一原理計算鋰嵌入與擴散於具氧空缺之二氧化鈦結構★ 探討不同量子化學方法對PR+COSMOSAC狀態方程式應用於預測純物質及混合流體相行為之影響
★ 預測固體溶質於超臨界二氧化碳中的溶解度★ 鋯金屬有機框架材料之碳氫氣體吸附與分離預測
★ 甲基水楊酸異構物於超臨界二氧化碳中之溶解度量測★ 原料藥與水楊酸衍生物於超臨界二氧化碳中之溶解度量測
★ 以第一原理計算探討鋰於鈮摻雜二氧化鈦之嵌入與擴散路徑★ 探討COSMO-SAC-dsp模型中分散項和組合項之效應
★ 第一原理計算探討藍磷烯異質結構用於鋰離子電池負極材料之特性★ 以第一原理計算探討鋰離子於鐵摻雜磷酸鋰鈷之塊材與表面附近之擴散路徑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-6-30以後開放)
摘要(中) 本研究透過半流動式裝置在溫度為 308.2 K、318.2 K 與 328.2 K,壓力範圍為 10 ~22 MPa 的超臨界二氧化碳中量測鄰乙氧苯甲醯胺和 2–氯–4-硝基苯甲酸的溶解度,並透過紫外∕可見分光光度計進行定量分析。在上述的實驗條件下,溶解度數據是以不同的二氧化碳取樣流量進行三次獨立量測,其中二氧化碳的流量範圍為3 L/h ~ 9 L/h,並由此三次獨立量測的溶解度取平均值當作該固體溶質在操作條件下於超臨界二氧化碳中的溶解度,且三次溶解度的變異係數皆低於6%。本次量測鄰乙氧苯甲醯胺和 2–氯–4–硝基苯甲酸的溶解度莫耳分率範圍分別落在10-5 ~ 10-4 與10-6 ~ 10-4。最後在此研究中利用四個半經驗方程式:Chrastil 模型、Mendez-Santiago & Teja (MST)模型、Bartle 模型和 Kumar & Johnston(K-J)模型,對新量測的溶解度數據進行迴歸和自身一致性測試。其得到的迴歸結果,在四種模型的平均相對標準誤差(average absolute relative deviation, AARD)中,範圍落在 2.17%的 Chrastil 模型到 7.10%的 K-J 模型之間,並利用四種半經驗方程式作為溶解度數據的自身一致性檢測,檢測結果都有不錯的線性關係,足以驗證實驗量測數據之可靠性。
摘要(英) In this study, the solubilities of ethenzamide and 2-chloro-4-nitrobenzoic acid were measured in supercritical carbon dioxide at temperatures of 308.2 K, 318.2 K, and 328.2 K and in a pressure range of 10 ~ 22 MPa by a semi-flow type apparatus. The composition analysis was carried out by ultraviolet–visible spectroscopy. The solubility of the studied solid solute at a given experimental condition was measured three times independently with different carbon dioxide sampling flow rates, where the carbon dioxide flow rates ranged from 3 L/h to 9 L/h. The reported solubility result was the average value of these three independent measurements, and the coefficient of variation of the solubility was confirmed to be less than 6% for all three measurements. Finally, four semi-empirical equations were used in this study: Chrastil model, Mendez-Santiago & Teja (MST) model, Bartle model and Kumar & Johnston (K-J) model. Experimental data regression and self-consistency tests of these newly measured solubility data were conducted. The overall deviation in term of average absolute relative deviation (AARD) were in the range of 2.17% (Chrastil model) ~ 7.10% (K-J model) for the four studied models. The self-consistency tests were performed using the four semi-empirical models for the solubility data, and the results confirm the reliability of the experimental data.
關鍵字(中) ★ 超臨界二氧化碳
★ 溶解度
★ 乙氧苯甲醯胺
★ 2–氯–4–硝基苯甲酸
★ 實驗量測
關鍵字(英) ★ Supercritical carbon dioxide
★ solubility
★ ethenzamide
★ 2-chloro-4-nitrobenzoic acid
★ experimental measurement
論文目次 中文摘要.............................................................i
Abstract............................................................ii
誌謝................................................................iii
目錄................................................................iv
圖目錄..............................................................vi
表目錄..............................................................viii
第一章 緒論..........................................................1
1-1 超臨界流體性質之發現與簡介........................................1
1-2 超臨界流體之應用.................................................3
1-3 固體溶質於超臨界二氧化碳中之溶解度的重要性.........................6
1-4 研究動機........................................................8
第二章 固體溶質於超臨界二氧化碳中之溶解度量測..........................9
2-1 實驗藥品........................................................9
2-2 實驗裝置.......................................................12
2-3 半流動式裝置操作與流程...........................................17
2-4 樣品成分分析與檢量線的建立.......................................19
2-5 溶解度數據處理..................................................23
2-6 取樣流速對於固體溶質溶解度之影響.................................30
2-7 溶解度數據迴歸..................................................32
2-8 半經驗式模型....................................................33
(1) Chrastil model ................................................33
(2) Mendez-Santiago and Teja model ................................34
(3) Bartle model ..................................................34
(4) Kumar and Johnston model.......................................35
2-9 溶解度數據自身一致性測試.........................................36
第三章 結果與討論...................................................37
3-1 固體溶質之溶解度數據.............................................37
3-2 固體溶質之半經驗式迴歸...........................................46
3-3 固體溶質之自身一致性檢測.........................................53
第四章 結論.........................................................58
參考文獻............................................................59
參考文獻 1. Berche, B.; Henkel, M.; Kenna, R., Critical phenomena: 150 years since Cagniard de la Tour. arXiv preprint arXiv:0905.1886 2009.
2. Hyatt, J. A., Liquid and supercritical carbon dioxide as organic solvents. The Journal of Organic Chemistry 1984, 49 (26), 5097-5101.
3. Williams, D., Extraction with supercritical gases. Chemical Engineering Science 1981, 36(11), 1769-1788.
4. Ruhan, A.; Motonobu, G.; Mitsuru, S., Supercritical Fluid Extraction in Food Analysis. In Handbook of Food Analysis Instruments, CRC Press: 2008.
5. Feng, Y.; Meier, D., Supercritical carbon dioxide extraction of fast pyrolysis oil from softwood. The Journal of Supercritical Fluids 2017, 128, 6-17.
6. Grodowska, K.; Parczewski, A., Organic solvents in the pharmaceutical industry. Acta Poloniae Pharmaceutica. Drug Research 2010, 67 (1).
7. Özkal, S. G.; Salgın, U.; Yener, M. E., Supercritical carbon dioxide extraction of hazelnut oil. Journal of Food Engineering 2005, 69 (2), 217-223.
8. Rovetto, L. J.; Aieta, N. V., Supercritical carbon dioxide extraction of cannabinoids from Cannabis sativa L. The Journal of Supercritical Fluids 2017, 129, 16-27.
9. Kayathi, A.; Chakrabarti, P. P.; Bonfim-Rocha, L.; Cardozo-Filho, L.; Jegatheesan, V., Selective extraction of polar lipids of mango kernel using Supercritical Carbon dioxide (SC–CO2) extraction: Process optimization of extract yield/phosphorous content and economic evaluation. Chemosphere 2020, 260, 127639.
10. Qamar, S.; Torres, Y. J.; Parekh, H. S.; Falconer, J. R., Extraction of medicinal cannabinoids through supercritical carbon dioxide technologies: A review. Journal of Chromatography B 2021, 1167, 122581.
11. Barzotto, I. L. M.; Santos, K. A.; da Silva, E. A.; Sene, A. C.; da Silva, N. S.; Vieira, L., Supercritical extraction of Eugenia involucrata leaves: Influence of operating conditions on yield and α-tocopherol content. The Journal of Supercritical Fluids 2019, 143, 55-63.
12. Bassett, S. P.; Russell, A. D.; McKeown, P.; Robinson, I.; Forder, T. R.; Taresco, V.; Davidson, M. G.; Howdle, S. M., Low-temperature and purification-free stereocontrolled ring-opening polymerisation of lactide in supercritical carbon dioxide. Green Chemistry 2020,22 (7), 2197-2202.
13. Villegas, M.; Oliveira, A. L.; Bazito, R. C.; Vidinha, P., Development of an integrated one-pot process for the production and impregnation of starch aerogels in supercritical carbon dioxide. The Journal of Supercritical Fluids 2019, 154, 104592.
14. Bai, T.; Kobayashi, K.; Tamura, K.; Jun, Y.; Zheng, L., Supercritical CO2 dyeing for nylon, acrylic, polyester, and casein buttons and their optimum dyeing conditions by design of experiments. Journal of CO2 Utilization 2019, 33, 253-261.
15. Kong, X.-j.; Huang, T.-t.; Cui, H.-s.; Yang, D.-f.; Lin, J.-x., Multicomponent system of trichromatic disperse dye solubility in supercritical carbon dioxide. Journal of CO2 Utilization 2019, 33, 1-11.
16. Abou Elmaaty, T.; Abd El-Aziz, E., Supercritical carbon dioxide as a green media in textile dyeing: a review. Textile Research Journal 2018, 88 (10), 1184-1212.
17. Amenaghawon, A. N.; Anyalewechi, C. L.; Kusuma, H. S.; Mahfud, M., Chapter 13 -Applications of supercritical carbon dioxide in textile industry. In Green Sustainable Process for Chemical and Environmental Engineering and Science, Inamuddin; Asiri, A. M.; Isloor, A. M., Eds. Elsevier: 2020; pp 329-346.
18. Mahato, R. I.; Narang, A. S., Pharmaceutical dosage forms and drug delivery. CRC Press: 2011.
19. Huang, L.-F.; Tong, W.-Q. T., Impact of solid state properties on developability assessment of drug candidates. Advanced drug delivery reviews 2004, 56 (3), 321-334.
20. Won, D.-H.; Kim, M.-S.; Lee, S.; Park, J.-S.; Hwang, S.-J., Improved physicochemical characteristics of felodipine solid dispersion particles by supercritical antisolvent precipitation process. Int. J. Pharm. 2005, 301 (1-2), 199-208.
21. Miguel, F.; Martin, A.; Gamse, T.; Cocero, M. J., Supercritical anti solvent precipitation of lycopene: Effect of the operating parameters. J. Supercrit. Fluids 2006, 36 (3), 225-235.
22. Charoenchaitrakool, M.; Dehghani, F.; Foster, N. R.; Chan, H. K., Micronization by rapid expansion of supercritical solutions to enhance the dissolution rates of poorly watersoluble pharmaceuticals. Ind. Eng. Chem. Res. 2000, 39 (12), 4794-4802.
23. Turk, M.; Hils, P.; Helfgen, B.; Schaber, K.; Martin, H. J.; Wahl, M. A., Micronization of pharmaceutical substances by the Rapid Expansion of Supercritical Solutions (RESS): a promising method to improve bioavailability of poorly soluble pharmaceutical agents. J.Supercrit. Fluids 2002, 22 (1), 75-84.
24. Basavoju, S.; Boström, D.; Velaga, S. P., Pharmaceutical cocrystal and salts of norfloxacin. Crystal growth & design 2006, 6 (12), 2699-2708.
25. MacEachern, L.; Kermanshahi-pour, A.; Mirmehrabi, M., Supercritical Carbon Dioxide for Pharmaceutical Co-Crystal Production. Crystal Growth & Design 2020, 20 (9), 6226-6244.
26. Padrela, L.; Rodrigues, M. A.; Tiago, J. o.; Velaga, S. P.; Matos, H. A.; de Azevedo, E. G., Insight into the mechanisms of cocrystallization of pharmaceuticals in supercritical solvents. Crystal Growth & Design 2015, 15 (7), 3175-3181.
27. Padrela, L.; Rodrigues, M. A.; Velaga, S. P.; Matos, H. A.; de Azevedo, E. G., Formation of indomethacin–saccharin cocrystals using supercritical fluid technology. European Journal of Pharmaceutical Sciences 2009, 38 (1), 9-17.
28. Cuadra, I. A.; Cabañas, A.; Cheda, J. A.; Türk, M.; Pando, C., Cocrystallization of the anticancer drug 5-fluorouracil and coformers urea, thiourea or pyrazinamide using supercritical CO2 as an antisolvent (SAS) and as a solvent (CSS). The Journal of Supercritical Fluids 2020, 160, 104813.
29. Ribas, M. M.; Sakata, G. S.; Santos, A. E.; Dal Magro, C.; Aguiar, G. P. S.; Lanza, M.; Oliveira, J. V., Curcumin cocrystals using supercritical fluid technology. The Journal of supercritical fluids 2019, 152, 104564.
30. Bao, P.; Dai, J., Relationships between the Solubility of CI Disperse Red 60 and Uptake on PET in Supercritical CO2. Journal of Chemical & Engineering Data 2005, 50 (3), 838-842.
31. Draper, S.; Montero, G.; Smith, B.; Beck, K., Solubility relationships for disperse dyes in supercritical carbon dioxide. Dyes and Pigments 2000, 45 (3), 177-183.
32. Kozak, A.; Marek, P. H.; Pindelska, E., Structural Characterization and Pharmaceutical Properties of Three Novel Cocrystals of Ethenzamide With Aliphatic Dicarboxylic Acids. Journal of Pharmaceutical Sciences 2019, 108 (4), 1476-1485.
33. Aitipamula, S.; Wong, A. B.; Chow, P. S.; Tan, R. B., Pharmaceutical cocrystals of ethenzamide: structural, solubility and dissolution studies. CrystEngComm 2012, 14 (24), 8515-8524.
34. Span, R.; Wagner, W., A new equation of state for carbon dioxide covering the fluid region from the triple‐point temperature to 1100 K at pressures up to 800 MPa. J. Phys. Chem. Ref. Data 1996, 25 (6), 1509-1596.
35. 100:2008, J., Evaluation of measurement data — Guide to the expression of uncertainty in measurement (GUM 1995 with minor corrections). 1 ed.; Joint Committee for Guides in Metrology: 2008.
36. Taylor, B. N.; Kuyatt, C. E., Guidelines for evaluating and expressing the uncertainty of NIST measurement results. U.S. Government Printing Office: Washington, DC, 1994.
37. Ellison, S. L. R.; Williams, A., Eurachem/CITAC guide: Quantifying uncertainty in analytical measurement. 3 ed.; 2012.
38. Kragten, J., Calculating standard deviations and confidence intervals with a universally applicable spreadsheet technique. Analyst 1994, 119 (10), 2161-2165.
39. Vetter, T. W. In Quantifying measurement uncertainty in analytical chemistry–A simplified practical approach, Measurement Science Conference, Anaheim, CA, January 18-19, 2001; National Institute of Standards and Technology (NIST): Anaheim, CA, 2001.
40. Tsai, C.-C.; Lin, H.-m.; Lee, M.-J., Phase equilibrium and micronization for flufenamic acid with supercritical carbon dioxide. Journal of the Taiwan Institute of Chemical Engineers 2017, 72, 19-28.
41. Zhan, S.; Li, S.; Zhao, Q.; Wang, W.; Wang, J., Measurement and correlation of curcumin solubility in supercritical carbon dioxide. Journal of Chemical & Engineering Data 2017, 62 (4), 1257-1263.
42. Jin, J.; Wang, Y.; Wu, H.; Li, J.; Zhang, Z., Equilibrium solubilities of ammonium benzoate, benzamide and their mixture in supercritical carbon dioxide. Fluid phase equilibria 2012, 334, 152-156.
43. Juan, C.; Oyarzún, B.; Quezada, N.; del Valle, J. M., Solubility of carotenoid pigments (lycopene and astaxanthin) in supercritical carbon dioxide. Fluid Phase Equilibria 2006, 247(1-2), 90-95.
44. Asiabi, H.; Yamini, Y.; Latifeh, F.; Vatanara, A., Solubilities of four macrolide antibiotics in supercritical carbon dioxide and their correlations using semi-empirical models. The Journal of Supercritical Fluids 2015, 104, 62-69.
45. Chrastil, J., Solubility of solids and liquids in supercritical gases. The Journal of Physical Chemistry 1982, 86 (15), 3016-3021.
46. Méndez-Santiago, J.; Teja, A. S., The solubility of solids in supercritical fluids. Fluid Phase Equilib. 1999, 158-160, 501-510.
47. Bartle, K.; Clifford, A.; Jafar, S.; Shilstone, G., Solubilities of solids and liquids of low volatility in supercritical carbon dioxide. Journal of Physical and Chemical Reference Data 1991, 20 (4), 713-756.
48. Kumar, S. K.; Johnston, K. P., Modelling the solubility of solids in supercritical fluids with density as the independent variable. The Journal of Supercritical Fluids 1988, 1 (1), 15-22.
49. Lee, C.-A.; Tang, M.; Chen, Y.-P., Measurement and correlation for the solubilities of cinnarizine, pentoxifylline, and piracetam in supercritical carbon dioxide. Fluid Phase Equilib. 2014, 367, 182-187.
50. Manna, L.; Banchero, M., Solubility of Tolbutamide and Chlorpropamide in Supercritical Carbon Dioxide. J. Chem. Eng. Data 2018, 63 (5), 1745-1751.
51. Li, Q.; Pan, P.; Lu, T.; Blackburn, S.; Leeke, G. A., Solubility of Azoxystrobin and Benflumetol in Compressed CO2—Measured by the Static Precise Mass Measuring Method. J. Chem. Eng. Data 2019, 64 (1), 9-15.
52. Ongkasin, K.; Sauceau, M.; Masmoudi, Y.; Fages, J.; Badens, E., Solubility of cefuroxime axetil in supercritical CO2: Measurement and modeling. J. Supercrit. Fluids 2019,152, 104498.
53. Sodeifian, G.; Hazaveie, S. M.; Sajadian, S. A.; Saadati Ardestani, N., Determination of the Solubility of the Repaglinide Drug in Supercritical Carbon Dioxide: Experimental Data and Thermodynamic Modeling. J. Chem. Eng. Data 2019, 64 (12), 5338-5348.
54. Li, B.; Guo, W.; Ramsey, E. D., Solubility Measurements of Chloramphenicol in Supercritical Fluid CO2 Using Static Solubility Apparatus Interfaced with Online Supercritical Fluid Chromatography. J. Chem. Eng. Data 2020, 65 (1), 153-159.
55. Foster, N. R.; Gurdial, G. S.; Yun, J. S.; Liong, K. K.; Tilly, K. D.; Ting, S. S.; Singh, H.; Lee, J. H., Significance of the crossover pressure in solid-supercritical fluid phase equilibria. Industrial & engineering chemistry research 1991, 30 (8), 1955-1964
指導教授 謝介銘(Chieh-Ming Hsieh) 審核日期 2021-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明