參考文獻 |
1. Lee, J., et al., Metal–organic framework materials as catalysts. Chemical Society Reviews, 2009. 38(5): p. 1450-1459.
2. Cavka, J.H., et al., A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. Journal of the American Chemical Society, 2008. 130(42): p. 13850-13851.
3. Garibay, S.J. and S.M. Cohen, Isoreticular synthesis and modification of frameworks with the UiO-66 topology. Chemical Communications, 2010. 46(41): p. 7700-7702.
4. Liu, X., et al., Highly water-stable zirconium metal–organic framework UiO-66 membranes supported on alumina hollow fibers for desalination. Journal of the American Chemical Society, 2015. 137(22): p. 6999-7002.
5. Cmarik, G.E., et al., Tuning the adsorption properties of UiO-66 via ligand functionalization. Langmuir, 2012. 28(44): p. 15606-15613.
6. Shearer, G.C., et al., Defect engineering: tuning the porosity and composition of the metal–organic framework UiO-66 via modulated synthesis. Chemistry of Materials, 2016. 28(11): p. 3749-3761.
7. Nouar, F., et al., Tuning the properties of the UiO-66 metal organic framework by Ce substitution. Chemical Communications, 2015. 51(77): p. 14458-14461.
8. Wu, H., et al., Unusual and highly tunable missing-linker defects in zirconium metal–organic framework UiO-66 and their important effects on gas adsorption. Journal of the American Chemical Society, 2013. 135(28): p. 10525-10532.
9. Abid, H.R., et al., Nanosize Zr-metal organic framework (UiO-66) for hydrogen and carbon dioxide storage. Chemical Engineering Journal, 2012. 187: p. 415-420.
10. Castarlenas, S., C. Téllez, and J. Coronas, Gas separation with mixed matrix membranes obtained from MOF UiO-66-graphite oxide hybrids. Journal of Membrane Science, 2017. 526: p. 205-211.
11. Vermoortele, F., et al., Synthesis modulation as a tool to increase the catalytic activity of metal–organic frameworks: the unique case of UiO-66 (Zr). Journal of the American Chemical Society, 2013. 135(31): p. 11465-11468.
12. Nivetha, R., et al., Role of MIL-53 (Fe)/hydrated–dehydrated MOF catalyst for electrochemical hydrogen evolution reaction (HER) in alkaline medium and photocatalysis. RSC advances, 2019. 9(6): p. 3215-3223.
13. Wang, Y., et al., Controlled fabrication and enhanced visible-light photocatalytic hydrogen production of Au@ CdS/MIL-101 heterostructure. Applied Catalysis B: Environmental, 2016. 185: p. 307-314.
14. Yan, H., et al., Holey reduced graphene oxide coupled with an Mo2N–Mo2C heterojunction for efficient hydrogen evolution. Advanced Materials, 2018. 30(2): p. 1704156.
15. Liu, T., et al., CoP‐doped MOF‐based electrocatalyst for pH‐universal hydrogen evolution reaction. Angewandte Chemie, 2019. 131(14): p. 4727-4732.
16. Chen, K., et al., Improving and Understanding the Hydrogen Evolving Activity of a Cobalt Dithiolene Metal–Organic Framework. ACS Applied Materials & Interfaces, 2021. 13(14): p. 16384-16395.
17. He, J., et al., A dye-sensitized Pt@ UiO-66 (Zr) metal–organic framework for visible-light photocatalytic hydrogen production. Chemical Communications, 2014. 50(53): p. 7063-7066.
18. Hou, X., et al., Maximizing the photocatalytic hydrogen evolution of Z-scheme UiO-66-NH 2@ Au@ CdS by aminated-functionalized linkers. Journal of Materials Science: Materials in Electronics, 2019. 30(5): p. 5203-5211.
19. Fiaz, M. and M. Athar, Enhancing the Hydrogen and Oxygen Evolution Reaction Efficiency of Amine Functionalized MOF NH 2-UiO-66 via Incorporation of CuO Nanoparticles. Catalysis Letters, 2020. 150(11): p. 3314-3326.
20. Grimme, S., Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction. Journal of computational chemistry, 2006. 27(15): p. 1787-1799.
21. Tkatchenko, A. and M. Scheffler, Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Physical review letters, 2009. 102(7): p. 073005.
22. Payne, M.C., et al., Iterative minimization techniques forab initiototal-energy calculations: molecular dynamics and conjugate gradients. Reviews of Modern Physics, 1992. 64(4): p. 1045-1097.
23. <Materials Studio Overview_20170927133925.pdf>.
24. Clark, S.J., et al., First principles methods using CASTEP. Zeitschrift für kristallographie-crystalline materials, 2005. 220(5-6): p. 567-570.
25. Trickett, C.A., et al., Definitive molecular level characterization of defects in UiO-66 crystals. Angew Chem Int Ed Engl, 2015. 54(38): p. 11162-7.
26. Donnay, J.D.H. and D. Harker, A new law of crystal morphology extending the law of Bravais. American Mineralogist: Journal of Earth and Planetary Materials, 1937. 22(5): p. 446-467.
27. Zhu, Y.-l., et al., Calculation on surface energy and electronic properties of CoS2. Royal Society open science, 2020. 7(7): p. 191653.
28. Huang, Q., et al., Experimental and computational investigation of CO2 capture on mix-ligand metal-organic framework UiO-66. Energy Procedia, 2017. 105: p. 4395-4401.
29. Xu, R., et al., Hierarchically porous UiO-66 with tunable mesopores and oxygen vacancies for enhanced arsenic removal. Journal of Materials Chemistry A, 2020. 8(16): p. 7870-7879.
30. Barone, V., et al., Role and effective treatment of dispersive forces in materials: Polyethylene and graphite crystals as test cases. Journal of computational chemistry, 2009. 30(6): p. 934-939.
31. Sławińska, J. and I. Zasada, Fingerprints of Dirac points in first-principles calculations of scanning tunneling spectra of graphene on a metal substrate. Physical Review B, 2011. 84(23): p. 235445.
32. Snee, P.T., DFT Calculations of InP Quantum Dots: Model Chemistries, Surface Passivation, and Open-Shell Singlet Ground States. The Journal of Physical Chemistry C, 2021.
33. Ng, M.-F., et al., Modulation of the work function of silicon nanowire by chemical surface passivation: a DFT study. Theoretical Chemistry Accounts, 2010. 127(5): p. 689-695.
34. Miller, M.A., C.-Y. Wang, and G.N. Merrill, Experimental and theoretical investigation into hydrogen storage via spillover in IRMOF-8. The Journal of Physical Chemistry C, 2009. 113(8): p. 3222-3231.
35. Peterson, A.A., et al., How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy & Environmental Science, 2010. 3(9): p. 1311-1315.
36. Psofogiannakis, G.M. and G.E. Froudakis, Theoretical explanation of hydrogen spillover in metal− organic frameworks. The Journal of Physical Chemistry C, 2011. 115(10): p. 4047-4053.
37. Sillar, K., A. Hofmann, and J. Sauer, Ab initio study of hydrogen adsorption in MOF-5. Journal of the American Chemical Society, 2009. 131(11): p. 4143-4150.
38. Chen, D.-L., et al., Ab initio molecular dynamic simulations on pd clusters confined in UiO-66-NH2. The Journal of Physical Chemistry C, 2017. 121(16): p. 8857-8863.
39. Zhang, X., et al., Catalytic oxidation of toluene using a facile synthesized Ag nanoparticle supported on UiO-66 derivative. Journal of colloid and interface science, 2020. 571: p. 38-47.
40. Quaino, P., et al., Volcano plots in hydrogen electrocatalysis–uses and abuses. Beilstein journal of nanotechnology, 2014. 5(1): p. 846-854.
41. Jacob, T., R.P. Muller, and W.A. Goddard, Chemisorption of atomic oxygen on Pt (111) from DFT studies of Pt-clusters. The Journal of Physical Chemistry B, 2003. 107(35): p. 9465-9476.
42. Tian, Z., et al., Theoretical evidence on the confinement effect of Pt@ UiO-66-NH2 for cinnamaldehyde hydrogenation. The Journal of Physical Chemistry C, 2019. 123(36): p. 22114-22122.
43. Pašti, I.A., N.M. Gavrilov, and S.V. Mentus, Hydrogen Adsorption on Palladium and Platinum Overlayers: DFT Study. Advances in Physical Chemistry, 2011.
44. Wang, D., Z.-P. Liu, and W.-M. Yang, Revealing the size effect of platinum cocatalyst for photocatalytic hydrogen evolution on TiO2 support: a DFT study. ACS Catalysis, 2018. 8(8): p. 7270-7278.
45. Kemppainen, E., et al., Scalability and feasibility of photoelectrochemical H 2 evolution: the ultimate limit of Pt nanoparticle as an HER catalyst. Energy & Environmental Science, 2015. 8(10): p. 2991-2999.
46. Kunimatsu, K., et al., Hydrogen adsorption and hydrogen evolution reaction on a polycrystalline Pt electrode studied by surface-enhanced infrared absorption spectroscopy. Electrochimica acta, 2007. 52(18): p. 5715-5724.
47. Wei, G.-F. and Z.-P. Liu, Restructuring and hydrogen evolution on Pt nanoparticle. Chemical science, 2015. 6(2): p. 1485-1490.
48. Zheng, F., et al., Immobilizing Pd nanoclusters into electronically conductive metal-organic frameworks as bi-functional electrocatalysts for hydrogen evolution and oxygen reduction reactions. Electrochimica Acta, 2019. 306: p. 627-634.
49. Fang, Y.-H., G.-F. Wei, and Z.-P. Liu, Catalytic role of minority species and minority sites for electrochemical hydrogen evolution on metals: surface charging, coverage, and Tafel kinetics. The Journal of Physical Chemistry C, 2013. 117(15): p. 7669-7680.
50. Quaino, P., et al., Recent Progress in Hydrogen Electrocatalysis. Advances in Physical Chemistry, 2011. |