博碩士論文 108324027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.21.98.162
姓名 王柏凱(Po-Kai Wang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 鉑摻雜之胺官能化鋯金屬有機框架 UiO-66-NH2@Pt析氫反應第一原理計算
(Improving the hydrogen evolution reaction of UiO-66-NH2@Pt from first principles)
相關論文
★ 利用固相反應法與電鍍法製備鈣鈦礦太陽能電池之研究★ 設計以雙噻吩併環戊二烯為核心的電洞傳輸材料並製備高效率穩定鈣鈦礦太陽能電池
★ 反溶劑處理對於製備大面積鈣鈦礦太陽能電池影響★ 二氧化鈦奈米粒徑尺寸對介觀結構鈣鈦礦太陽能電池光伏特性之影響
★ 塗佈溫度與混合溶劑比例對於刮刀塗佈製備鈣鈦礦層影響及鈣鈦礦太陽能電池性能表現探討★ 熱處理效應對於混合陽離子鈣鈦礦太陽能電池之光電性質及電池穩定性影響
★ 蔗糖水熱碳化法及後續活化製備活性碳以及活性碳對空氣過濾的應用★ 雙金屬有機骨架結構混合基質膜合成及芳香烴吸附第一原理計算
★ 製膜溶劑對於混合基質膜中金屬有機框架結構沉澱影響與其氣體滲透特性之探討★ 金屬有機骨架材料與活性碳共填充之混和基材膜性質探討
★ 蒸氣相成長金屬有機框架材料合成★ 外表面積和靜電相互作用機理對MOFs染料吸附的重要性
★ 第一原理計算對於氮摻石墨烯在氧氣還原反應與拉曼增強的探討★ 金屬有機框架結構晶體形貌與缺陷對於混合基材薄膜特性與氣體滲透之探討
★ 鋯金屬有機框架結構之二氧化碳吸附性質探討★ 金屬有機框架結構晶體形貌與缺陷對於混合基材薄膜特性與氣體滲透之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-6-30以後開放)
摘要(中) UiO-66為具有許多優秀性質的金屬有機框架材料,其優異的性質如: 高表面積、高孔隙率、熱穩定性、水穩定性。而UiO-66能透過製造缺陷或是官能基化的改質使其化學及物理性質改變,在不同領域所需的特性得到有效的調整,此可調性深受研究所喜愛,在此我們利用UiO-66作為催化劑進行析氫反應(hydrogen evolution reaction, HER)。
本研究使用模擬計算手法,利用蒙地卡羅法(Monte Carlo simulations)及密度泛函理論(density functional theory)討論胺官能化對UiO-66表面的析氫反應有何影響,以及鉑的摻雜是否能再更近一步增進析氫反應的表現,討論HER反應發生時的機制與變化。結果顯示,胺官能化的UiO-66能提供更多的氫吸附點位,並增強氫在表面的吸附能力,藉由這些方式有效的提升析氫反應的活性,而鉑的摻雜對析氫反應的強化更為顯著,除了既有的有機金屬框架結構,鉑金屬本身也有析氫的能力,並透過有機金屬框架的分散作用,在少量的鉑使用量即可達到催化的效果。
摘要(英) UiO-66 is a kind of metal organic framework (MOF) material with many excellent properties, such as high surface area, high porosity, thermal stability, and water stability. Another feature of UiO-66 is that it can change the properties by manufacturing defects or modification of functional group for the required characteristics in different fields. This tunability make UiO-66 popular in researches. We use UiO-66 as a catalyst for hydrogen evolution reaction (HER) in this study.
This study uses Monte Carlo simulations and density functional theory (DFT) to discuss the effect of amine functionalization on the hydrogen evolution reaction on the surface of UiO-66, and whether platinum doping can improve the performance of the hydrogen evolution reaction by investigating mechanism. The results show that UiO-66-NH2 can provide more hydrogen adsorption sites and enhance the adsorption of hydrogen on the surface. The amine-functionalized can effectively improve the activity of hydrogen evolution reaction. Platinum doping also promotes the hydrogen evolution reaction. Besides to the existing MOF structure, platinum metal itself also has the ability to evolve hydrogen. On the other hand, the catalysis reaction can be achieved with a fewer amount of platinum through dispersion effect of MOF.
關鍵字(中) ★ 有機金屬框架
★ 析氫反應
★ 第一原理計算
關鍵字(英) ★ metal organic framework (MOF)
★ hydrogen evolution reaction (HER)
★ density functional theory (DFT)
論文目次 摘要 i
Abstract ii
Acknowledgment iii
Table of Content iv
List of Figures vii
List of Tables xii
Chapter 1 Background 1
1.1 Introduction 1
1.1.1 UiO-66 features 2
1.1.2 Hydrogen evolution reaction by MOFs 2
1.1.3 Multi-component MOF based catalytic in HER 3
1.1.4 Hydrogen evolution reaction by MOF in simulation 5
1.2 Motivation 7
Chapter 2 Theory 9
2.1 Density functional theory (DFT) 9
2.2 Density functional theory with London dispersion corrections 12
2.3 Self-consistent field (SCF) 13
2.4 Basis set 13
2.5 Cutoff energy 14
2.6 Brillouin zones 14
2.7 K-point sampling 15
2.8 Pseudopotential 15
2.9 Monte Carlo methods 17
2.10 Hydrogen evolution reaction (HER) 18
Chapter 3 Computational Details 20
3.1 Visualizer software 20
3.2 Modules 20
3.2.1 CASTEP (CAmbridge Serial Total Energy Package) 20
3.2.2 Sorption 21
3.3 Model construction 21
3.4 Convergence testing 24
3.5 Geometry optimization 30
3.6 Sorption locate 31
Chapter 4 Results and Discussion 32
4.1 Structure with geometry optimization 32
4.1.1 UiO-66 and UiO-66-NH2 surface 32
4.1.2 Passivated UiO-66 and UiO-66-NH2 surface 33
4.2 Hydrogen adsorption of HER 34
4.3 Hydrogen molecular desorption of HER 41
4.3.1 Tafel mechanism 41
4.3.2 Heyrovsky mechanism 44
4.4 Platinum doping in UiO-66 46
4.5 Platinum effect for hydrogen adsorption 48
4.6 Hydrogen molecular desorption of platinum doped MOF 51
4.6.1 Tafel mechanism of MOF@Pt 51
4.7 Comparison of Pt effect 54
Chapter 5 Conclusions 58
Chapter 6 Future Work 59
References 60
參考文獻 1. Lee, J., et al., Metal–organic framework materials as catalysts. Chemical Society Reviews, 2009. 38(5): p. 1450-1459.
2. Cavka, J.H., et al., A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. Journal of the American Chemical Society, 2008. 130(42): p. 13850-13851.
3. Garibay, S.J. and S.M. Cohen, Isoreticular synthesis and modification of frameworks with the UiO-66 topology. Chemical Communications, 2010. 46(41): p. 7700-7702.
4. Liu, X., et al., Highly water-stable zirconium metal–organic framework UiO-66 membranes supported on alumina hollow fibers for desalination. Journal of the American Chemical Society, 2015. 137(22): p. 6999-7002.
5. Cmarik, G.E., et al., Tuning the adsorption properties of UiO-66 via ligand functionalization. Langmuir, 2012. 28(44): p. 15606-15613.
6. Shearer, G.C., et al., Defect engineering: tuning the porosity and composition of the metal–organic framework UiO-66 via modulated synthesis. Chemistry of Materials, 2016. 28(11): p. 3749-3761.
7. Nouar, F., et al., Tuning the properties of the UiO-66 metal organic framework by Ce substitution. Chemical Communications, 2015. 51(77): p. 14458-14461.
8. Wu, H., et al., Unusual and highly tunable missing-linker defects in zirconium metal–organic framework UiO-66 and their important effects on gas adsorption. Journal of the American Chemical Society, 2013. 135(28): p. 10525-10532.
9. Abid, H.R., et al., Nanosize Zr-metal organic framework (UiO-66) for hydrogen and carbon dioxide storage. Chemical Engineering Journal, 2012. 187: p. 415-420.
10. Castarlenas, S., C. Téllez, and J. Coronas, Gas separation with mixed matrix membranes obtained from MOF UiO-66-graphite oxide hybrids. Journal of Membrane Science, 2017. 526: p. 205-211.
11. Vermoortele, F., et al., Synthesis modulation as a tool to increase the catalytic activity of metal–organic frameworks: the unique case of UiO-66 (Zr). Journal of the American Chemical Society, 2013. 135(31): p. 11465-11468.
12. Nivetha, R., et al., Role of MIL-53 (Fe)/hydrated–dehydrated MOF catalyst for electrochemical hydrogen evolution reaction (HER) in alkaline medium and photocatalysis. RSC advances, 2019. 9(6): p. 3215-3223.
13. Wang, Y., et al., Controlled fabrication and enhanced visible-light photocatalytic hydrogen production of Au@ CdS/MIL-101 heterostructure. Applied Catalysis B: Environmental, 2016. 185: p. 307-314.
14. Yan, H., et al., Holey reduced graphene oxide coupled with an Mo2N–Mo2C heterojunction for efficient hydrogen evolution. Advanced Materials, 2018. 30(2): p. 1704156.
15. Liu, T., et al., CoP‐doped MOF‐based electrocatalyst for pH‐universal hydrogen evolution reaction. Angewandte Chemie, 2019. 131(14): p. 4727-4732.
16. Chen, K., et al., Improving and Understanding the Hydrogen Evolving Activity of a Cobalt Dithiolene Metal–Organic Framework. ACS Applied Materials & Interfaces, 2021. 13(14): p. 16384-16395.
17. He, J., et al., A dye-sensitized Pt@ UiO-66 (Zr) metal–organic framework for visible-light photocatalytic hydrogen production. Chemical Communications, 2014. 50(53): p. 7063-7066.
18. Hou, X., et al., Maximizing the photocatalytic hydrogen evolution of Z-scheme UiO-66-NH 2@ Au@ CdS by aminated-functionalized linkers. Journal of Materials Science: Materials in Electronics, 2019. 30(5): p. 5203-5211.
19. Fiaz, M. and M. Athar, Enhancing the Hydrogen and Oxygen Evolution Reaction Efficiency of Amine Functionalized MOF NH 2-UiO-66 via Incorporation of CuO Nanoparticles. Catalysis Letters, 2020. 150(11): p. 3314-3326.
20. Grimme, S., Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction. Journal of computational chemistry, 2006. 27(15): p. 1787-1799.
21. Tkatchenko, A. and M. Scheffler, Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Physical review letters, 2009. 102(7): p. 073005.
22. Payne, M.C., et al., Iterative minimization techniques forab initiototal-energy calculations: molecular dynamics and conjugate gradients. Reviews of Modern Physics, 1992. 64(4): p. 1045-1097.
23. <Materials Studio Overview_20170927133925.pdf>.
24. Clark, S.J., et al., First principles methods using CASTEP. Zeitschrift für kristallographie-crystalline materials, 2005. 220(5-6): p. 567-570.
25. Trickett, C.A., et al., Definitive molecular level characterization of defects in UiO-66 crystals. Angew Chem Int Ed Engl, 2015. 54(38): p. 11162-7.
26. Donnay, J.D.H. and D. Harker, A new law of crystal morphology extending the law of Bravais. American Mineralogist: Journal of Earth and Planetary Materials, 1937. 22(5): p. 446-467.
27. Zhu, Y.-l., et al., Calculation on surface energy and electronic properties of CoS2. Royal Society open science, 2020. 7(7): p. 191653.
28. Huang, Q., et al., Experimental and computational investigation of CO2 capture on mix-ligand metal-organic framework UiO-66. Energy Procedia, 2017. 105: p. 4395-4401.
29. Xu, R., et al., Hierarchically porous UiO-66 with tunable mesopores and oxygen vacancies for enhanced arsenic removal. Journal of Materials Chemistry A, 2020. 8(16): p. 7870-7879.
30. Barone, V., et al., Role and effective treatment of dispersive forces in materials: Polyethylene and graphite crystals as test cases. Journal of computational chemistry, 2009. 30(6): p. 934-939.
31. Sławińska, J. and I. Zasada, Fingerprints of Dirac points in first-principles calculations of scanning tunneling spectra of graphene on a metal substrate. Physical Review B, 2011. 84(23): p. 235445.
32. Snee, P.T., DFT Calculations of InP Quantum Dots: Model Chemistries, Surface Passivation, and Open-Shell Singlet Ground States. The Journal of Physical Chemistry C, 2021.
33. Ng, M.-F., et al., Modulation of the work function of silicon nanowire by chemical surface passivation: a DFT study. Theoretical Chemistry Accounts, 2010. 127(5): p. 689-695.
34. Miller, M.A., C.-Y. Wang, and G.N. Merrill, Experimental and theoretical investigation into hydrogen storage via spillover in IRMOF-8. The Journal of Physical Chemistry C, 2009. 113(8): p. 3222-3231.
35. Peterson, A.A., et al., How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy & Environmental Science, 2010. 3(9): p. 1311-1315.
36. Psofogiannakis, G.M. and G.E. Froudakis, Theoretical explanation of hydrogen spillover in metal− organic frameworks. The Journal of Physical Chemistry C, 2011. 115(10): p. 4047-4053.
37. Sillar, K., A. Hofmann, and J. Sauer, Ab initio study of hydrogen adsorption in MOF-5. Journal of the American Chemical Society, 2009. 131(11): p. 4143-4150.
38. Chen, D.-L., et al., Ab initio molecular dynamic simulations on pd clusters confined in UiO-66-NH2. The Journal of Physical Chemistry C, 2017. 121(16): p. 8857-8863.
39. Zhang, X., et al., Catalytic oxidation of toluene using a facile synthesized Ag nanoparticle supported on UiO-66 derivative. Journal of colloid and interface science, 2020. 571: p. 38-47.
40. Quaino, P., et al., Volcano plots in hydrogen electrocatalysis–uses and abuses. Beilstein journal of nanotechnology, 2014. 5(1): p. 846-854.
41. Jacob, T., R.P. Muller, and W.A. Goddard, Chemisorption of atomic oxygen on Pt (111) from DFT studies of Pt-clusters. The Journal of Physical Chemistry B, 2003. 107(35): p. 9465-9476.
42. Tian, Z., et al., Theoretical evidence on the confinement effect of Pt@ UiO-66-NH2 for cinnamaldehyde hydrogenation. The Journal of Physical Chemistry C, 2019. 123(36): p. 22114-22122.
43. Pašti, I.A., N.M. Gavrilov, and S.V. Mentus, Hydrogen Adsorption on Palladium and Platinum Overlayers: DFT Study. Advances in Physical Chemistry, 2011.
44. Wang, D., Z.-P. Liu, and W.-M. Yang, Revealing the size effect of platinum cocatalyst for photocatalytic hydrogen evolution on TiO2 support: a DFT study. ACS Catalysis, 2018. 8(8): p. 7270-7278.
45. Kemppainen, E., et al., Scalability and feasibility of photoelectrochemical H 2 evolution: the ultimate limit of Pt nanoparticle as an HER catalyst. Energy & Environmental Science, 2015. 8(10): p. 2991-2999.
46. Kunimatsu, K., et al., Hydrogen adsorption and hydrogen evolution reaction on a polycrystalline Pt electrode studied by surface-enhanced infrared absorption spectroscopy. Electrochimica acta, 2007. 52(18): p. 5715-5724.
47. Wei, G.-F. and Z.-P. Liu, Restructuring and hydrogen evolution on Pt nanoparticle. Chemical science, 2015. 6(2): p. 1485-1490.
48. Zheng, F., et al., Immobilizing Pd nanoclusters into electronically conductive metal-organic frameworks as bi-functional electrocatalysts for hydrogen evolution and oxygen reduction reactions. Electrochimica Acta, 2019. 306: p. 627-634.
49. Fang, Y.-H., G.-F. Wei, and Z.-P. Liu, Catalytic role of minority species and minority sites for electrochemical hydrogen evolution on metals: surface charging, coverage, and Tafel kinetics. The Journal of Physical Chemistry C, 2013. 117(15): p. 7669-7680.
50. Quaino, P., et al., Recent Progress in Hydrogen Electrocatalysis. Advances in Physical Chemistry, 2011.
指導教授 張博凱(Bor-Kae Chang) 審核日期 2021-8-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明