參考文獻 |
[1] P. Friedlingstein, M. O′Sullivan, M. W. Jones, R. M. Andrew, J. Hauck, A. Olsen, G. P. Peters, W. Peters, J. Pongratz, S. Sitch, C. Le Quéré, J. G. Canadell, P. Ciais, R. B. Jackson, S. Alin, L. E. O. C. Aragão, A. Arneth, V. Arora, N. R. Bates, M. Becker, A. Benoit-Cattin, H. C. Bittig, L. Bopp, S. Bultan, N. Chandra, F. Chevallier, L. P. Chini, W. Evans, L. Florentie, P. M. Forster, T. Gasser, M. Gehlen, D. Gilfillan, T. Gkritzalis, L. Gregor, N. Gruber, I. Harris, K. Hartung, V. Haverd, R. A. Houghton, T. Ilyina, A. K. Jain, E. Joetzjer, K. Kadono, E. Kato, V. Kitidis, J. I. Korsbakken, P. Landschützer, N. Lefèvre, A. Lenton, S. Lienert, Z. Liu, D. Lombardozzi, G. Marland, N. Metzl, D. R. Munro, J. E. M. S. Nabel, S.-I. Nakaoka, Y. Niwa, K. O′Brien, T. Ono, P. I. Palmer, D. Pierrot, B. Poulter, L. Resplandy, E. Robertson, C. Rödenbeck, J. Schwinger, R. Séférian, I. Skjelvan, A. J. P. Smith, A. J. Sutton, T. Tanhua, P. P. Tans, H. Tian, B. Tilbrook, G. van der Werf, N. Vuichard, A. P. Walker, R. Wanninkhof, A. J. Watson, D. Willis, A. J. Wiltshire, W. Yuan, X. Yue and S. Zaehle, Global Carbon Budget 2020, Earth System Science Data, vol. 12, pp. 3269–3340, 2020.
[2] 經濟部能源局, 108年能源統計手冊, June 2020.
[3] 台灣電力股份有限公司, https://www.taipower.com.tw/tc/Chart.aspx?mid=194.
[4] IEA, Global Energy Review: CO2 Emissions in 2020, https://www.iea.org/reports/global-energy-review-2020/global-energy-and-co2-emissions-in-2020.
[5] 行政院環境保護署, 溫室氣體排放統計, https://www.epa.gov.tw/Page/81825C40725F211C/6a1ad12a-4903-4b78-b246-8709e7f00c2b%E3%80%80.
[6] 李元亨, 什麼是碳捕存(CCS)?原理及重要性, https://scitechvista.nat.gov.tw/c/sffl.htm, 2017.
[7] 楊閎舜,周正堂, 變壓吸附程序在二氧化碳捕獲技術之發展與研究, 化工, 63卷1期, pp. 83-97, 2016.
[8] 談駿嵩,王志盈, 二氧化碳捕獲, 科學發展, 510期, pp. 32-37, 2015.
[9] 張育誠, 吳國光, 焦鴻文, 簡國祥, 歐陽湘, 富氧燃燒技術之應用與分析, 台灣能源期刊, 二卷3期, pp. 323-331, 2015.
[10] C. Chao, Y. Deng, R. Dewil, J. Baeyens and X. Fan, Post-combustion carbon capture, Renewable and Sustainable Energy Reviews, vol. 138, article 110490, 2021.
[11] A. Agarwal, Advanced Strategies for Optimal Design and Operation of Pressure Swing Adsorption Processes, PhD thesis, Carnegie Mellon University, Pittsburgh, 2010.
[12] R. T. Yang, Gas Seperation by Adsorption Process, vol. 1, Imperial College Press, London, 1997.
[13] S. U. Rege and R. T. Yang, A Simple Parameter for Seleciton an Adsorbent for Gas Separation by Pressure Swing Adsorption, Separation Science and Technology, vol. 36(15), pp. 3355-3365, 2001.
[14] C. W. Skarstrom, Method and apparatus for fractionating gaseous mixtures by adsorption, US Patent 2944627, 1960.
[15] A. E. Rodrigues, M. D. LeVan and D. Tondeur, Adsorption: Science and Technology, Kluwer Academic Publishers, London, 1988.
[16] W. Choi, T. Kwon and Y. Yeo, Optimal Operation of the Pressure Swing Adsorption (PSA) Process, Korean Journal Chemical Engineering, vol. 20, pp. 617-623, 2003.
[17] P. E. Jahromi, S. Fatemi, A.Vatani, J.A. Ritter and A. D. Ebner, Purification of Helium from a Cryogenic Natural Gas Nitrogen Rejection Unit by Pressure Swing Adsorption, Separation and Purification Technology, vol. 193, pp. 91-102, 2018.
[18] P. G. de Montgareuil and D. Domine, Process for Separating a Binary Gaseous Mixture by Adsorption, US Patent 3155468, 1964.
[19] B. K. Na, H. L. Lee, K. K. Koo and H. K. Song, Effect of Rinse and Recycle Methods on the Pressure Swing Adsorption Process to Recover CO2 from Power Plant Flue Gas Using Activated Carbon, Industrial & Engineering Chemistry Research, vol. 41, pp. 5498-5503, 2002.
[20] K. Chihara and M. Suzuki, Air Drying by Pressure Swing Adsorption, Journal of Chemical Engineering of Japan, vol. 16, pp. 293-299, 1983.
[21] J. J. Collins, Air Separation by Adsorption, US Patent 4026680, 1975.
[22] S. J. Doong and R. T. Yang, Hydrogen Purification by the Multibed Pressure Swing Adsorption Process, Reactive Polymers, vol. 6, pp. 7-13, 1987.
[23] L. Jiang, V.G. Fox and L.T. Biegler, Simulation and Optimal Design of Multiple-Bed Pressure Swing Adsorption Systems, AIChE Journal, vol. 50, pp. 2904-2914, 2004.
[24] E. Rudelstorfer and A. Fuderer, Selective Adsorption Process, US Patent 3986849, 1976.
[25] P. H. Turnock and R. H. Kadlec, Separation of Nitrogen and Methane via Periodic Adsorption, AIChE Journal, vol. 17, pp. 335-342, 1971.
[26] R.T. Yang and S. J. Doong, Gas Separation by Pressure Swing Adsorption: A Pore-Diffusion Model for Bulk Separation, AIChE Journal, vol. 31, pp. 1829-1842, 1985.
[27] S. Farooq and D. M. Ruthven, A Comparison of Linear Driving Force and Pore Diffusion Models for a Pressure Swing Adsorption Bulk Separation Process, Chemical Engineering Science, vol. 45, pp. 107-115, 1990
[28] E. Glueckauf and J. I. Coates, Theory of Chromatography. part IV. the Influence of Incomplete Equilibrium on the Front Boundary of Chromatograms and on the Effectiveness of Separation, Journal of the Chemical Society, pp. 1315-1321, 1947.
[29] M. Alibolandi, S. M. Sadrameli, F. Rezaee and J. T. Darian, Separation of CO2/N2 mixture by vacuum pressure swing adsorption (PSA) using zeolite 13X type and carbon molecular sieve adsorbents, Heat and Mass Transfer, vol. 56, p. 1985–1994, 2020.
[30] G. N. Nikolaidis, E. S. Kikkinides and M. C. Georgiadis, An Integrated Two-stage P/VSA Process for Postcombustion CO2 Capture Using COmbination of Adsorbents Zeolite 13X and Mg-MOF-74, Industrial & Engineering Chemistry Research, vol. 56(4), pp. 974-988, 2017.
[31] D. Wawrzyńczak, I. M.-Kucęba, K. Srokosz, M. Kozak, W. Nowak, J. Zdeb, W. Smółka and A. Zajchowski, The pilot dual-reflux vacuum pressure swing adsorption unit for CO2 capture from flue gas, Separation and Purification Technology, vol. 209, pp. 560-570, 2019.
[32] R. Haghpanah, A. Rajendran, S. Farooq and I. A. Karimi, Optimization of One- and Two-Staged Kinetically Controlled CO2 Capture Processes from Postcombustion Flue Gas on a Carbon Molecular Sieve, Industrial & Engineering Chemistry Research, vol. 53, pp. 9186–9198, 2014.
[33] C. Shen, Z. Liu, P. Li and J. Yu, Two-Stage VPSA Process for CO2 Capture from Flue Gas Using Activated Carbon Beads, Industrial & Engineering Chemistry Research, vol. 51, pp. 5011–5021, 2012.
[34] Z. Liu, L. Wang, X. Kong, P. Li, J. Yu and A. E. Rodrigues, Onsite CO2 Capture from Flue Gas by an Adsorption Process in a Coal-Fired Power Plant, Industrial & Engineering Chemistry Research, vol. 51, pp. 7355-7363, 2012.
[35] Q. Huang and M. Eic´, Commercial adsorbents as benchmark materials for separation of carbon dioxide and nitrogen by vacuum swing adsorption process, Separation and Purification Technology, vol. 103, pp. 203-215, 2013.
[36] L. Wang, Z. Liu, P. Li, J. Wang and J. Yu, CO2 capture from flue gas by two successive VPSA units using 13XAPG, Adsorption Journal of the International Adsorption Society, vol. 18, pp. 445-459, 2012.
[37] Z. Liu, C. A. Grande, P. Li, J. Yu and A. E. Rodrigues, Multi-bed Vacuum Pressure Swing Adsorption for carbon dioxide capture from flue gas, Separation and Purification Technology, vol. 81(3), pp. 307-317, 2011.
[38] M. Ishibashi, H. Ota, N. Akutsu, S. Umeda, M. Tajika, J. Izumi, A. Yasutake, T. Kabata and Y. Kageyama, Technology for removing carbon dioxide from power plant flue gas by the physical adsorption method, Energy Conversion and Management, vol. 37, pp. 929-933, 1996.
[39] Y. Shen, Y. Zhou, D. Li, Q. Fu, D. Zhang and P. Na, Dual-reflux pressure swing adsorption process for carbon dioxide capture from dry flue gas, International Journal of Greenhouse Gas Control, vol. 65, pp. 55-64, 2017.
[40] J. Ling, P. Xiao, A. Ntiamoah, D. Xu, P. Webley and Y. Zhai, Strategies for CO2 capture from different CO2 emission sources by vacuum swing adsorption technology, Chinese Journal of Chemical Engineering, vol. 24(4), pp. 460-467, 2016.
[41] L. Wang, Y. Yang, W. Shen, X. Kong, P. Li, J. Yu and A. E. Rodrigues, CO2 Capture from Flue Gas in an Existing Coal-Fired Power Plant by Two Successive Pilot-Scale VPSA Units, Industrial & Engineering Chemistry Research, vol. 52, pp. 7947-7955, 2013.
[42] J J. H. Park, H. T. Beum, Jg. N. Kim and S. H. Cho, Numerical Analysis on the Power Consumption of the PSA Process, Industrial & Engineering Chemistry Research, vol. 41, pp. 4122-4131, 2002.
[43] C.T. Chou and C.Y. Chen, Carbon Dioxide Recovery by Vacuum Swing Adsorption, Separation and Purification Technology, no. 39, pp. 51-65, 2004.
[44] D. Duong, Adsorption analysis: equilibria and kinetics, Imperial College Press, London, 1998.
[45] C. Y. Wen and L. T. Fan, Models for Flow Systems and Chemical Reactors, Dekker, New York, 1975.
[46] R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport Phenomena, 2nd ed., Wiley, New York, 2007.
[47] E. N. Fuller, P. D. Schettler and J. C. Giddings, A Comparison of Methods for Predicting Gaseous Diffusion Coefficients, Journal of Chromatography, vol. 3, pp. 222-227, 1965.
[48] E. N. Fuller, K. Ensley and J. C. Giddings, Diffusion of Halogenated Hydrocarbons in Helium. The Effect of Structure on Collision Cross Sections, The Journal of Physical Chemistry, vol. 73, pp. 3679-3685, 1969.
[49] D. F. Fairbanks and C.R. Wilke, Diffusion coefficients in multicomponent gas mixtures, Industrial & Engineering Chemistry, vol. 42, pp. 471-475, 1950.
[50] W. L. McCabe, J. C. Smith and P. Harriott, Unit Operations of Chemical Engineering, 7th ed., McGraw-Hill, New York, 2005.
[51] W. H. McAdams, Heat Transmission, 3rd ed., McGraw-Hill, New York, 1954
[52] S. Farooq and D. M. Ruthven, Heat Effects in Adsorption Column Dynamics. 2. Experimental Validation of The one-Dimensional Model, Industrial & Engineering Chemistry Research, vol. 29, pp. 1084-1090, 1990.
[53] N. Wakao, S. Kaguei and T. Funazkri, Effect of Fluid Dispersion Coefficients on Particle-to-Fluid Heat Transfer Coefficients In Packed Beds: Correlation of Nusselt Numbers, Chemical Engineering Science, vol. 34, pp. 325-336, 1979.
[54] G. Carta and A. Cincotti, Film Model Approximation Fornon-Linear Adsorption and Diffusion in Spherical Particles, Chemical Engineering Science, vol. 53, pp. 3483-3488, 1998.
[55] J. Karger, D. M. Ruthven and J. Wiley, Diffusion in Zeolites and Other Microporous Solids, Wiley, Hoboken, 2008.
[56] M. D. LeVan, G. Carta and C. M. Yon, Adsorption and Ion Exchange, Perry′s Chemical Engineers′ Handbook, 7th ed., McGrawHill, New York, 1997.
[57] K. Kawazoe, M. Suzuki and K. Chihara, Chromatographic study of diffusion in molecular-sieving carbon, Journal of Chemical Engineering of Japan, vol. 7, pp. 151-157, 1974.
[58] H. Qinglin, S. M. Sundaram and S. Farooq, Revisiting Transport of Gases in the Micropores of Carbon Molecularsieves, Langmuir, vol. 19, pp. 393-405, 2003.
[59] X. Hu, E. Mangano, D. Friedrich, H. Ahn and S. Brandani, Diffusion Mechanism of CO2 in 13X Zeolite Beads, Adsorption, vol. 20, pp. 121-135, 2014.
[60] M. I. Hossain, C. E. Holland, A. D. Ebner and J. A. Ritter, Mass Transfer Mechanisms and Rates of CO2 and N2 in 13X Zeolite from Volumetric Frequency Response, Industrial & Engineering Chemistry Research, vol. 58, pp. 21679-21690, 2019.
[61] P. V. Danckwerts, Continuous Flow Systems: Distribution of Residence, Chemical Engineering Science, vol. 2, pp. 1-13, 1953.
[62] 李念祖, 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗, 碩士論文, 國立中央大學化學工程與材料工程學系, 2015.
[63] J. M. Smith and H. C. Ness, Introduction to Chemical Engineering Thermodynamics, 4th ed., McGraw-Hill, New York, 1987.
[64] 郭家禎, 利用三塔式真空變壓吸附法捕獲燃煤電廠煙道氣中二氧化碳之實驗研究, 碩士論文, 國立中央大學化學工程與材料工程學系, 2020.
[65] 鄭筑勻, 以變壓吸附法捕獲發電廠煙道氣中二氧化碳之模擬研究與實驗設計分析, 碩士論文, 國立中央大學化學工程與材料工程學系, 2019.
[66] 張鈞翔, 利用真空變壓吸附法捕獲發電廠煙道氣中二氧化碳之三塔實驗設計分析模擬研究, 碩士論文, 國立中央大學化學工程與材料工程學系, 2020.
[67] 魏子倫, 改善三塔真空變壓吸附程序捕獲煙道氣中二氧化碳之實驗設計分析, 碩士論文, 國立中央大學化學工程與材料工程學系, 2020.
[68] A. Golmakani, S. Fatemi and J. Tamnanloo, CO2 capture from the tail gas of hydrogen purification unit by vacuum swing adsorption process, using SAPO-34, Industrial & Engineering Chemistry Research, vol. 55, pp. 334-350, 2016.
[69] R. C. Patel and C. J. Karamchandani, Elements of Heat Engines, 8th ed., Acharya, Vadodara, 1997.
[70] 田賀文, 以反應曲面法建立旋鍛製程之菇狀預測模型, 碩士論文, 國立中央大學機械工程學系, 2013.
[71] G. E. P. Box and N. R. Draper, Empirical Model Building and Response Surfaces, John Wiley & Sons, New York, 1987.
[72] R. H. Myers, D. C. Montgomery, Response Surface Methodology, John Wiley & Sons, New York, 1995.
[73] 葉怡成, 實驗規劃-製程與產品最佳化, 五南圖書出版公司, 台北市, ISBN:9571124087, 2005.
[74] D. C. Montgomery, Design and Analysis of Experiments, 7E International Student Version, 7th ed., John Wiley & Sons Ltd., Hoboken, 2009.
[75] K. Kamatani, Efficient Strategy for the Markov Chain Monte Carlo in High-Dimension with Heavy-Tailed Target Probability Distribution, Bernoulli, vol. 24, no. 4B, pp. 3711-3750, 2018. |