參考文獻 |
[1] A.Heidary Rouchi andM.Mahdavi-Mazdeh, “Regenerative medicine in organ and tissue transplantation: Shortly and practically achievable?,” Int. J. Organ Transplant. Med., vol. 6, no. 3, pp. 93–98, 2015.
[2] M.Mimeault, R.Hauke, andS. K.Batra, “Stem cells: A revolution in therapeutics - Recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies,” Clin. Pharmacol. Ther., vol. 82, no. 3, pp. 252–264, 2007, doi: 10.1038/sj.clpt.6100301.
[3] S.Jha, N.Jha, andA.Sharma, “Stem cell therapy in treatment of diseases,” J. Crit. Rev., vol. 7, no. 3, pp. 855–858, 2020, doi: 10.31838/jcr.07.03.149.
[4] H. M.Blau andG. Q.Daley, “Stem Cells in the Treatment of Disease,” N. Engl. J. Med., vol. 380, no. 18, pp. 1748–1760, 2019, doi: 10.1056/nejmra1716145.
[5] J. K.Biehl andB.Russell, “Introduction to Stem Cell Therapy,” J. Cardiovasc. Nurs., vol. 24, no. 2, pp. 98–103, 2009, doi: 10.1097/JCN.0b013e318197a6a5.
[6] W.Zakrzewski, M.Dobrzyński, M.Szymonowicz, andZ.Rybak, “Stem cells: past, present, and future,” Stem Cell Res. Ther., vol. 10, no. 1, p. 68, Dec.2019, doi: 10.1186/s13287-019-1165-5.
[7] P.T. Brown, A.M. Handorf, W.Bae Jeon, andW.-J.Li, “Stem Cell-based Tissue Engineering Approaches for Musculoskeletal Regeneration,” Curr. Pharm. Des., vol. 19, no. 19, pp. 3429–3445, 2013, doi: 10.2174/13816128113199990350.
[8] M.Tewary, N.Shakiba, andP. W.Zandstra, “Stem cell bioengineering: building from stem cell biology,” Nat. Rev. Genet., vol. 19, no. 10, pp. 595–614, 2018, doi: 10.1038/s41576-018-0040-z.
[9] M.Berdasco andM.Esteller, “DNA methylation in stem cell renewal and multipotency,” Stem Cell Res. Ther., vol. 2, no. 5, 2011, doi: 10.1186/scrt83.
[10] S.Menon, S.Shailendra, A.Renda, M.Longaker, andN.Quarto, “An overview of direct somatic reprogramming: The ins and outs of iPSCs,” Int. J. Mol. Sci., vol. 17, no. 1, 2016, doi: 10.3390/ijms17010141.
[11] C.Kaebisch, D.Schipper, P.Babczyk, andE.Tobiasch, “The role of purinergic receptors in stem cell differentiation,” Comput. Struct. Biotechnol. J., vol. 13, pp. 75–84, 2015, doi: 10.1016/j.csbj.2014.11.003.
[12] D.Ilic andJ. M.Polak, “Stem cells in regenerative medicine: Introduction:,” Br. Med. Bull., vol. 98, no. 1, pp. 117–126, 2011, doi: 10.1093/bmb/ldr012.
[13] K. H.Narsinh, J.Plews, andJ. C.Wu, “Comparison of human induced pluripotent and embryonic stem cells: Fraternal or identical twins?,” Mol. Ther., vol. 19, no. 4, pp. 635–638, 2011, doi: 10.1038/mt.2011.41.
[14] G.Amabile andA.Meissner, “Induced pluripotent stem cells: current progress and potential for regenerative medicine,” Trends Mol. Med., vol. 15, no. 2, pp. 59–68, 2009, doi: 10.1016/j.molmed.2008.12.003.
[15] J. A.Thomson, “Embryonic stem cell lines derived from human blastocysts,” Science (80-. )., vol. 282, no. 5391, pp. 1145–1147, 1998, doi: 10.1126/science.282.5391.1145.
[16] K. H. S.Campbell, J.McWhir, W. A.Ritchie, andI.Wilmut, “Sheep cloned by nuclear transfer from a cultured cell line,” Nature, vol. 380, no. 6569, pp. 64–66, 1996, doi: 10.1038/380064a0.
[17] K.Takahashi andS.Yamanaka, “Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors,” Cell, vol. 126, no. 4, pp. 663–676, 2006, doi: 10.1016/j.cell.2006.07.024.
[18] S.Yamanaka, “Induced pluripotent stem cells: Past, present, and future,” Cell Stem Cell, vol. 10, no. 6, pp. 678–684, 2012, doi: 10.1016/j.stem.2012.05.005.
[19] K.Takahashi et al., “Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors,” Cell, vol. 131, no. 5, pp. 861–872, 2007, doi: 10.1016/j.cell.2007.11.019.
[20] A.DiRuscio, F.Patti, R. S.Welner, D. G.Tenen, andG.Amabile, “Multiple sclerosis: Getting personal with induced pluripotent stem cells,” Cell Death Dis., vol. 6, no. 7, pp. 1–7, 2015, doi: 10.1038/cddis.2015.179.
[21] A.Higuchi et al., “Design of polymeric materials for culturing human pluripotent stem cells: Progress toward feeder-free and xeno-free culturing,” Prog. Polym. Sci., vol. 39, no. 7, pp. 1348–1374, 2014, doi: 10.1016/j.progpolymsci.2014.01.002.
[22] A.Higuchi et al., “Physical cues of cell culture materials lead the direction of differentiation lineages of pluripotent stem cells,” J. Mater. Chem. B, vol. 3, no. 41, pp. 8032–8058, 2015, doi: 10.1039/c5tb01276g.
[23] R.Bernad, C. J.Lynch, R. G.Urdinguio, C.Stephan-Otto Attolini, M. F.Fraga, andM.Serrano, “Stability of Imprinting and Differentiation Capacity in Naïve Human Cells Induced by Chemical Inhibition of CDK8 and CDK19,” Cells, vol. 10, no. 4, p. 876, Apr.2021, doi: 10.3390/cells10040876.
[24] M. J.Shamblott et al., “Derivation of pluripotent stem cells from cultured human primordial germ cells,” Proc. Natl. Acad. Sci. U. S. A., vol. 95, no. 23, pp. 13726–13731, 1998, doi: 10.1073/pnas.95.23.13726.
[25] A.Higuchi, Q. D.Ling, Y. A.Ko, Y.Chang, andA.Umezawa, “Biomaterials for the feeder-free culture of human embryonic stem cells and induced pluripotent stem cells,” Chem. Rev., vol. 111, no. 5, pp. 3021–3035, 2011, doi: 10.1021/cr1003612.
[26] H.Bai andZ. Z.Wang, “Directing human embryonic stem cells to generate vascular progenitor cells,” Gene Ther., vol. 15, no. 2, pp. 89–95, Jan.2008, doi: 10.1038/sj.gt.3303005.
[27] K.Tano, S.Yasuda, T.Kuroda, H.Saito, A.Umezawa, andY.Sato, “A novel in vitro method for detecting undifferentiated human pluripotent stem cells as impurities in cell therapy products using a highly efficient culture system,” PLoS One, vol. 9, no. 10, 2014, doi: 10.1371/journal.pone.0110496.
[28] H.Donnelly, M.Salmeron-Sanchez, andM. J.Dalby, “Designing stem cell niches for differentiation and self-renewal,” J. R. Soc. Interface, vol. 15, no. 145, 2018, doi: 10.1098/rsif.2018.0388.
[29] H.Ibraheim, C.Giacomini, Z.Kassam, F.Dazzi, andN.Powell, “Advances in mesenchymal stromal cell therapy in the management of Crohn’s disease,” Expert Rev. Gastroenterol. Hepatol., vol. 12, no. 2, pp. 141–153, 2018, doi: 10.1080/17474124.2018.1393332.
[30] J. R.Ferreira, G. Q.Teixeira, S. G.Santos, M. A.Barbosa, G.Almeida-Porada, andR. M.Gonçalves, “Mesenchymal stromal cell secretome: Influencing therapeutic potential by cellular pre-conditioning,” Front. Immunol., vol. 9, no. December, pp. 1–17, 2018, doi: 10.3389/fimmu.2018.02837.
[31] J.Penny, P.Harris, K.Shakesheff, andA.Mobasheri, “The biology of equine mesenchymal stem cells: Phenotypic characterization, cell surface markers and multilineage differentiation,” Front. Biosci., vol. 17, no. 3, pp. 892–908, 2012, doi: 10.2741/3963.
[32] R. R.Sharma, K.Pollock, A.Hubel, andD.McKenna, “Mesenchymal stem or stromal cells: a review of clinical applications and manufacturing practices,” Transfusion, vol. 54, no. 5, pp. 1418–1437, May2014, doi: 10.1111/trf.12421.
[33] K.Hynes, D.Menicanin, K.Mrozik, S.Gronthos, andP. M.Bartold, “Generation of functional mesenchymal stem cells from different induced pluripotent stem cell lines,” Stem Cells Dev., vol. 23, no. 10, pp. 1084–1096, 2014, doi: 10.1089/scd.2013.0111.
[34] S.Aggarwal andM. F.Pittenger, “Human mesenchymal stem cells modulate allogeneic immune cell responses,” Blood, vol. 105, no. 4, pp. 1815–1822, 2005, doi: 10.1182/blood-2004-04-1559.
[35] A.Manuscript, “Mesenchymal stem cell-educated macrophages: a novel type of,” vol. 37, no. 12, pp. 1445–1453, 2010, doi: 10.1016/j.exphem.2009.09.004.Mesenchymal.
[36] A.Augello, R.Tasso, S. M.Negrini, R.Cancedda, andG.Pennesi, “Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis,” Arthritis Rheum., vol. 56, no. 4, pp. 1175–1186, Apr.2007, doi: 10.1002/art.22511.
[37] G. M.Spaggiari, A.Capobianco, H.Abdelrazik, F.Becchetti, M. C.Mingari, andL.Moretta, “Mesenchymal stem cells inhibit natural killer–cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2,” Blood, vol. 111, no. 3, pp. 1327–1333, Feb.2008, doi: 10.1182/blood-2007-02-074997.
[38] W. D.Shlomchik et al., “Prevention of graft versus host disease by inactivation of host antigen- presenting cells,” Science (80-. )., vol. 285, no. 5426, pp. 412–415, 1999, doi: 10.1126/science.285.5426.412.
[39] W. X.Gao et al., “Effects of mesenchymal stem cells from human induced pluripotent stem cells on differentiation, maturation, and function of dendritic cells,” Stem Cell Res. Ther., vol. 8, no. 1, pp. 1–16, 2017, doi: 10.1186/s13287-017-0499-0.
[40] G.Chamberlain, J.Fox, B.Ashton, andJ.Middleton, “Concise Review: Mesenchymal Stem Cells: Their Phenotype, Differentiation Capacity, Immunological Features, and Potential for Homing,” Stem Cells, vol. 25, no. 11, pp. 2739–2749, Nov.2007, doi: 10.1634/stemcells.2007-0197.
[41] X.Zhou, N.Jin, F.Wang, andB.Chen, “Mesenchymal stem cells: A promising way in therapies of graft-versus-host disease,” Cancer Cell Int., vol. 20, no. 1, pp. 1–11, 2020, doi: 10.1186/s12935-020-01193-z.
[42] S. K. W.Oh andA. B. H.Choo, “Stem Cells,” Compr. Biotechnol. Second Ed., vol. 1, pp. 341–365, 2011, doi: 10.1016/B978-0-08-088504-9.00038-6.
[43] A. J.Engler, S.Sen, H. L.Sweeney, andD. E.Discher, “Matrix Elasticity Directs Stem Cell Lineage Specification,” Cell, vol. 126, no. 4, pp. 677–689, 2006, doi: 10.1016/j.cell.2006.06.044.
[44] M. S.Friedman, M. W.Lone, andK. D.Hankenson, “Osteogenic differentiation of human mesenchymal stem cells is regulated by bone morphogenetic protein-6,” J. Cell. Biochem., vol. 98, no. 3, pp. 538–554, 2006, doi: 10.1002/jcb.20719.
[45] A.Higuchi, Q. D.Ling, S. T.Hsu, andA.Umezawa, “Biomimetic cell culture proteins as extracellular matrices for stem cell differentiation,” Chem. Rev., vol. 112, no. 8, pp. 4507–4540, 2012, doi: 10.1021/cr3000169.
[46] J.Pan et al., “Culture and differentiation of purified human adipose-derived stem cells by membrane filtration: via nylon mesh filters,” J. Mater. Chem. B, vol. 8, no. 24, pp. 5204–5214, 2020, doi: 10.1039/d0tb00947d.
[47] C.Shen, C.Yang, S.Xu, andH.Zhao, “Comparison of osteogenic differentiation capacity in mesenchymal stem cells derived from human amniotic membrane (AM), umbilical cord (UC), chorionic membrane (CM), and decidua (DC),” Cell Biosci., vol. 9, no. 1, pp. 1–11, 2019, doi: 10.1186/s13578-019-0281-3.
[48] S.Muduli et al., “Proliferation and osteogenic differentiation of amniotic fluid-derived stem cells,” J. Mater. Chem. B, vol. 5, no. 27, pp. 5345–5354, 2017, doi: 10.1039/c7tb01152k.
[49] Y.Zhu, T.Liu, K.Song, X.Fan, X.Ma, andZ.Cui, “Adipose-derived stem cell: A better stem cell than BMSC,” Cell Biochem. Funct., vol. 26, no. 6, pp. 664–675, 2008, doi: 10.1002/cbf.1488.
[50] S. P.Poulos, M.V.Dodson, andG. J.Hausman, “Cell line models for differentiation: Preadipocytes and adipocytes,” Exp. Biol. Med., vol. 235, no. 10, pp. 1185–1193, 2010, doi: 10.1258/ebm.2010.010063.
[51] A. W.James, “Review of Signaling Pathways Governing MSC Osteogenic and Adipogenic Differentiation,” Scientifica (Cairo)., vol. 2013, pp. 1–17, 2013, doi: 10.1155/2013/684736.
[52] S.Miettinen, J. R.Sarkanen, andN.Ashammakhi, “Adipose Tissue and Adipocyte Differentiation: Molecular and Cellular Aspects and Tissue Engineering Applications,” Top. Tissue Eng., vol. 4, pp. 1–26, 2008.
[53] A.Higuchi et al., “Differentiation ability of adipose-derived stem cells separated from adipose tissue by a membrane filtration method,” J. Memb. Sci., vol. 366, no. 1–2, pp. 286–294, 2011, doi: 10.1016/j.memsci.2010.10.009.
[54] C.Chung andJ. A.Burdick, “Engineering cartilage tissue,” Adv. Drug Deliv. Rev., vol. 60, no. 2, pp. 243–262, Jan.2008, doi: 10.1016/j.addr.2007.08.027.
[55] S. E.Carver andC. A.Heath, “Increasing extracellular matrix production in regenerating cartilage with intermittent physiological pressure,” Biotechnol. Bioeng., vol. 62, no. 2, pp. 166–174, Jan.1999, doi: 10.1002/(SICI)1097-0290(19990120)62:2<166::AID-BIT6>3.0.CO;2-K.
[56] S.Saha, J.Kirkham, D. J.Wood, andX. B.Yang, “Progenitor and stem cell therapies for cartilage repair,” Progenit. Stem Cell Technol. Ther., pp. 391–417, 2012, doi: 10.1533/9780857096074.3.391.
[57] L. A.Solchaga, K. J.Penick, andJ. F.Welter, Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells: tips and tricks., vol. 698, no. 12. 2011.
[58] G.Putz, M.A, andA.Danilkovitch-Miagkov, “Mesenchymal Stem Cells as Vehicles for Targeted Therapies,” Drug Discov. Dev. - Present Futur., no. December 2011, 2011, doi: 10.5772/29124.
[59] M.Compte et al., “Factory neovessels: Engineered human blood vessels secreting therapeutic proteins as a new drug delivery system,” Gene Ther., vol. 17, no. 6, pp. 745–751, 2010, doi: 10.1038/gt.2010.33.
[60] X.Wei, X.Yang, Z. P.Han, F. F.Qu, L.Shao, andY. F.Shi, “Mesenchymal stem cells: A new trend for cell therapy,” Acta Pharmacol. Sin., vol. 34, no. 6, pp. 747–754, 2013, doi: 10.1038/aps.2013.50.
[61] O.Hovatta, M.Stojkovic, M.Nogueira, andI.Varela-Nieto, “European scientific, ethical, and legal issues on human stem cell research and regenerative medicine.,” Stem Cells, vol. 28, no. 6, pp. 1005–1007, 2010, doi: 10.1002/stem.436.
[62] A. R.Muslimov et al., “Biomimetic drug delivery platforms based on mesenchymal stem cells impregnated with light-responsive submicron sized carriers,” Biomater. Sci., vol. 8, no. 4, pp. 1137–1147, 2020, doi: 10.1039/c9bm00926d.
[63] V.Turinetto, E.Vitale, andC.Giachino, “Senescence in human mesenchymal stem cells: Functional changes and implications in stem cell-based therapy,” Int. J. Mol. Sci., vol. 17, no. 7, pp. 1–18, 2016, doi: 10.3390/ijms17071164.
[64] A.Trounson, R. G.Thakar, G.Lomax, andD.Gibbons, “Clinical trials for stem cell therapies,” BMC Med., vol. 9, no. 1, p. 52, Dec.2011, doi: 10.1186/1741-7015-9-52.
[65] A.Higuchi, H.-F.Li, S.Suresh Kumar, A. A.Alarfaj, andM. A.Munusamy, Stem Cell Culture on Polymer Hydrogels. Springer Singapore, 2018.
[66] A.Higuchi, Q. D.Ling, Y.Chang, S. T.Hsu, andA.Umezawa, “Physical cues of biomaterials guide stem cell differentiation fate,” Chem. Rev., vol. 113, no. 5, pp. 3297–3328, 2013, doi: 10.1021/cr300426x.
[67] A.Higuchi et al., “Polymeric design of cell culture materials that guide the differentiation of human pluripotent stem cells,” Prog. Polym. Sci., vol. 65, pp. 83–126, 2017, doi: 10.1016/j.progpolymsci.2016.09.002.
[68] D.Zhang et al., “Comparison of a xeno-free and serum-free culture system for human embryonic stem cells with conventional culture systems,” Stem Cell Res. Ther., vol. 7, no. 1, pp. 1–10, 2016, doi: 10.1186/s13287-016-0347-7.
[69] E. S.Rosler et al., “Long-term culture of human embryonic stem cells in feeder-free conditions,” Dev. Dyn., vol. 229, no. 2, pp. 259–274, Feb.2004, doi: 10.1002/dvdy.10430.
[70] N.Desai, P.Rambhia, andA.Gishto, “Human embryonic stem cell cultivation: Historical perspective and evolution of xeno-free culture systems,” Reprod. Biol. Endocrinol., vol. 13, no. 1, 2015, doi: 10.1186/s12958-015-0005-4.
[71] G.Yu, Y.Kamano, F.Wang, H.Okawa, H.Yatani, andH.Egusa, “Feeder Cell Sources and Feeder-Free Methods for Human iPS Cell Culture,” in Interface Oral Health Science 2014, K.Sasaki, O.Suzuki, andN.Takahashi, Eds.Tokyo: Springer Japan, 2015, pp. 145–159.
[72] S. K. W.Oh andA. B. H.Choo, “Human embryonic stem cell technology: Large scale cell amplification and differentiation,” Cytotechnology, vol. 50, no. 1–3, pp. 181–190, 2006, doi: 10.1007/s10616-005-3862-4.
[73] C. S.Hughes, L. M.Postovit, andG. A.Lajoie, “Matrigel: a complex protein mixture required for optimal growth of cell culture.,” Proteomics, vol. 10, no. 9, pp. 1886–1890, 2010, doi: 10.1002/pmic.200900758.
[74] C.Xu et al., “Feeder-free growth of undifferentiated human embryonic stem cells,” Nat. Biotechnol., vol. 19, no. 10, pp. 971–974, 2001, doi: 10.1038/nbt1001-971.
[75] F. T.Bosman andI.Stamenkovic, “Functional structure and composition of the extracellular matrix,” J. Pathol., vol. 200, no. 4, pp. 423–428, 2003, doi: 10.1002/path.1437.
[76] G. A.DiLullo, S. M.Sweeney, J.Körkkö, L.Ala-Kokko, andJ. D.San Antonio, “Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen,” J. Biol. Chem., vol. 277, no. 6, pp. 4223–4231, 2002, doi: 10.1074/jbc.M110709200.
[77] S.Ricard-Blum, “The Collagen Family,” Cold Spring Harb. Perspect. Biol., vol. 3, no. 1, pp. 1–19, 2011, doi: 10.1101/cshperspect.a004978.
[78] Y.Mei et al., “Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells,” Nat. Mater., vol. 9, no. 9, pp. 768–778, 2010, doi: 10.1038/nmat2812.
[79] S. M.Naqvi andL. M.McNamara, “Stem Cell Mechanobiology and the Role of Biomaterials in Governing Mechanotransduction and Matrix Production for Tissue Regeneration,” Front. Bioeng. Biotechnol., vol. 8, no. December, pp. 1–27, 2020, doi: 10.3389/fbioe.2020.597661.
[80] A. I.Aghmiuni andA. A.Khiavi, “Medicinal Plants to Calm and Treat Psoriasis Disease,” in Aromatic and Medicinal Plants - Back to Nature, InTech, 2017.
[81] I.Schvartz, D.Seger, andS.Shaltiel, “Vitronectin,” Int. J. Biochem. Cell Biol., vol. 31, no. 5, pp. 539–544, May1999, doi: 10.1016/S1357-2725(99)00005-9.
[82] L. Y. W.Yap et al., “Defining a threshold surface density of vitronectin for the stable expansion of human embryonic stem cells,” Tissue Eng. - Part C Methods, vol. 17, no. 2, pp. 193–207, 2011, doi: 10.1089/ten.tec.2010.0328.
[83] C.Chen, Z.Jiang, andG.Yang, “Laminins in osteogenic differentiation and pluripotency maintenance,” Differentiation, vol. 114, no. February, pp. 13–19, 2020, doi: 10.1016/j.diff.2020.05.002.
[84] Y.Li, S.Powell, E.Brunette, J.Lebkowski, andR.Mandalam, “Expansion of human embryonic stem cells in defined serum-free medium devoid of animal-derived products,” Biotechnol. Bioeng., vol. 91, no. 6, pp. 688–698, 2005, doi: 10.1002/bit.20536.
[85] J.Jia et al., “Development of peptide-functionalized synthetic hydrogel microarrays for stem cell and tissue engineering applications,” Acta Biomater., vol. 45, no. 3, pp. 110–120, Nov.2016, doi: 10.1016/j.actbio.2016.09.006.
[86] Z.Melkoumian et al., “Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells,” Nat. Biotechnol., vol. 28, no. 6, pp. 606–610, 2010, doi: 10.1038/nbt.1629.
[87] A.Higuchi et al., “Long-term xeno-free culture of human pluripotent stem cells on hydrogels with optimal elasticity,” Sci. Rep., vol. 5, pp. 1–16, 2015, doi: 10.1038/srep18136.
[88] Y. M.Chen et al., “Xeno-free culture of human pluripotent stem cells on oligopeptide-grafted hydrogels with various molecular designs,” Sci. Rep., vol. 7, no. February, pp. 1–16, 2017, doi: 10.1038/srep45146.
[89] M. D.Pierschbacher andE.Ruoslahti, “Can Be Duplicated By Small Synthetic Fragments of the Molecule,” Nature, pp. 3–6, 1984.
[90] S.Suzuki, A.Oldberg, E. G.Hayman, M. D.Pierschbacher, andE.Ruoslahti, “Complete amino acid sequence of human vitronectin deduced from cDNA. Similarity of cell attachment sites in vitronectin and fibronectin.,” EMBO J., vol. 4, no. 10, pp. 2519–2524, 1985, doi: 10.1002/j.1460-2075.1985.tb03965.x.
[91] A.Oldberg, A.Franzen, D.Heinegard, M.Pierschbacher, andE.Ruoslahti, “Identification of a bone sialoprotein receptor in osteosarcoma cells,” J. Biol. Chem., vol. 263, no. 36, pp. 19433–19436, 1988, doi: 10.1016/s0021-9258(19)77652-2.
[92] R. M.Salasznyk, W. A.Williams, A.Boskey, A.Batorsky, andG. E.Plopper, “Adhesion to vitronectin and collagen I promotes osteogenic differentiation of human mesenchymal stem cells,” J. Biomed. Biotechnol., vol. 2004, no. 1, pp. 24–34, 2004, doi: 10.1155/S1110724304306017.
[93] A.Higuchi et al., “Polymeric materials for ex vivo expansion of hematopoietic progenitor and stem cells,” Polym. Rev., vol. 49, no. 3, pp. 181–200, 2009, doi: 10.1080/15583720903048185.
[94] M.Nomizu et al., “Cell binding sequences in mouse laminin α1 chain,” J. Biol. Chem., vol. 273, no. 49, pp. 32491–32499, 1998, doi: 10.1074/jbc.273.49.32491.
[95] M. J.Cooke et al., “Neural differentiation regulated by biomimetic surfaces presenting motifs of extracellular matrix proteins,” J. Biomed. Mater. Res. - Part A, vol. 93, no. 3, pp. 824–832, 2010, doi: 10.1002/jbm.a.32585.
[96] X.Wang et al., “Immune modulatory mesenchymal stem cells derived from human embryonic stem cells through a trophoblast-like stage,” Stem Cells, vol. 34, no. 2, pp. 380–391, 2016, doi: 10.1002/stem.2242.
[97] A.Papadopoulou et al., “Mesenchymal stem cells are conditionally therapeutic in preclinical models of rheumatoid arthritis,” Ann. Rheum. Dis., vol. 71, no. 10, pp. 1733–1740, 2012, doi: 10.1136/annrheumdis-2011-200985.
[98] Q.Zhao et al., “MSCs derived from iPSCs with a modified protocol are tumor-tropic but have much less potential to promote tumors than bone marrow MSCs,” Proc. Natl. Acad. Sci. U. S. A., vol. 112, no. 2, pp. 530–535, 2015, doi: 10.1073/pnas.1423008112.
[99] E. I.Ozay et al., “CymerusTM iPSC-MSCs significantly prolong survival in a pre-clinical, humanized mouse model of Graft-vs-host disease,” Stem Cell Res., vol. 35, p. 101401, Mar.2019, doi: 10.1016/j.scr.2019.101401.
[100] C.Zhao andM.Ikeya, “Generation and Applications of Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells,” Stem Cells Int., vol. 2018, 2018, doi: 10.1155/2018/9601623.
[101] E.Li, Z.Zhang, B.Jiang, L.Yan, J. W.Park, andR. H.Xu, “Generation of mesenchymal stem cells from human embryonic stem cells in a complete serum-free condition,” Int. J. Biol. Sci., vol. 14, no. 13, pp. 1901–1909, 2018, doi: 10.7150/ijbs.25306.
[102] G.Lin, K.Martins-Taylor, andR.-H.Xu, “Human Embryonic Stem Cell Derivation, Maintenance, and Differentiation to Trophoblast,” in An Automated Irrigation System Using Arduino Microcontroller, vol. 1908, no. January, 2010, pp. 1–24. |