博碩士論文 108324046 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:18.191.165.192
姓名 王君閣(Chun-Ko Wang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 多能幹細胞在無異種條件下分化為間充質幹細 胞的生物材料比較研究
(Comparative study of biomaterials for hPSCs differentiation into MSCs in xeno-free conditions)
相關論文
★ 人類幹細胞培養於熱敏感奈米片段材料之研究★ 抗癌藥物的鑑定性用於分析大腸癌中癌幹細胞之研究
★ 利用具有奈米片段的生醫材料進行純化及去除癌症幹細胞★ 羊水間葉幹細胞培養於細胞外間質及材料硬度/彈性表面,其分化能力及多能性之研究
★ 人類脂肪幹細胞的膜純化法與分化能力研究★ 人類羊水間葉幹細胞培養於具有奈米片段與最佳表面硬度的生醫材料,其增殖與成骨分化能力
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 移植物抗宿主病(GVHD)是現今器官和造血幹細胞移植的主要受到限制因素之一。許多研究發現,在組織移植時人類間充質幹細胞(hMSCs)可以保護移植組織免受 GVHD 的影響。然而,由於從組織中萃取出的hMSCs受到傳代數量有限和從骨髓中提取過程困難與痛苦的限制。這些限制使hMSCs治療有許多障礙。因此,人類多能幹細胞(hPSCs)衍生的hMSCs (hPSC-derived MSCs)被認為是一種有前途且可無限提供hMSCs的來源。
在這項研究中,我將Xu等人發表的分化方案(Int. J. Biol. Sci., 14 (2018) 1901) 進行一些修改,其中將原始方案中使用的 Matrigel 更改為無異種生物材料。在這研究中我使用人細胞外基質 (ECM) 塗層培養皿作為無異種生物材料,其中包括重組玻連蛋白、層粘連蛋白-511、層粘連蛋白-521、纖連蛋白和膠原蛋白。利用添加骨塑型蛋白-4 (BMP4) 和A83-01抑製劑的方法將細胞從hPSCs分化成hMSCs。最後,為了檢測hPSC-derived MSCs的性質,將使用流式細胞儀分析MSC標誌物(CD44、CD73、CD90 和 CD105)的表達和評估hPSC-derived MSCs分化為成骨細胞、軟骨細胞和脂肪細胞的能力。根據結果,Laminin-521 和 I 型膠原蛋白是hPSCs分化為hMSCs的兩種最佳生物材料。儘管在所有條件下分化的hPSCs都顯示出類似的hMSCs特徵,例如細胞形態,但在這兩種條件下培養的細胞顯示出更好的倍增時間和更高的 MSC 標記表達。因此,Laminin-521 塗層表面被認為是用於hPSC-derived MSCs製備的最可靠和無異種細胞培養生物材料。
另外,在我們之前的研究中已成功的將人類多能幹細胞培養在寡玻連蛋白(KGGPQVTRGDVFTMP)和層粘連蛋白-β4衍生肽 (PMQKMRGDVFSP) 嫁接的聚乙烯醇-衣康酸水膠上。他們發現添加正電荷序列 (KGG) 可能有助於細胞附著的效率。為了研究正電荷序列 (KGG) 是否可增進hESCs的增殖且同時hESCs在無異種細胞培養條件下能保持其多能性和分化為hMSCs的能力,因此我用不同數量的正電荷序列修改了層粘連蛋白衍生肽的新寡肽(PMQKMRGDVFSP) 。通過比較hESCs長期培養和分化為間充質乾細胞 (hMSCs) 的能力來評估其在新設計的寡肽環境下的生醫領域之應用特性。根據結果,在hESC培養中,我發現KLBC2K(在linker前面加了正電荷氨基酸)和LB2CKKK(在linker和主鏈之間有更多的正電荷關節段)能提供hESCs穩定的長期培養,且可以成功分化為hMSCs。除此之外,在分化成hMSC方法下,hESC-derived MSCs培養在LB2CK和KLB2CK的PVA-IA水凝膠上能顯示出更好的倍增時間和較高的 MSC 標記表達。因此,整合hESC培養與分化成hMSCs的結果,嫁接在PVA-IA水凝膠表面的KLB2CK是一種可靠的新設計的用於 hPSC-derived MSCs分化的寡肽。
未來,將評估hPSC-derived MSCs向成骨細胞、軟骨細胞和脂肪細胞的分化能力。在用同種異體單核細胞處理hPSC-derived MSCs後,利用活死細胞染色法和炎性細胞因子的分泌,以評估hPSC-derived MSCs對 GVHD 的保護作用。預計目前的hPSC-derived MSCs可以在未來廣泛應用於再生醫學。
摘要(英) Graft-versus-host disease (GVHD) is one of the major limiting factors of organ transplantation and hematopoietic stem cell transplantation. The transplantation of human mesenchymal stem cells (hMSCs) has shown great effects to protect transplanted tissues from GVHD. However, hMSC treatment has the main barrier because of limited passage numbers of hMSCs and painful extraction procedures from bone marrow. Human pluripotent stem cells (hPSCs)-derived hMSCs (hPSC-MSCs) should be a promising and limitless source of hMSCs for patient treatment of GVHD. hMSCs were generated from differentiation of hPSCs using the modified protocol reported by Xu et al. (Int. J. Biol. Sci., 14 (2018) 1901) where Matrigel used in the original protocol was changed to xeno-free biomaterials. hPSCs were differentiated into hMSCs by treating bone morphogenetic protein 4 (BMP-4) and A83-01 inhibitor. The xeno-free protocol for hMSC differentiation was developed using different human extracellular matrix proteins (hECMs)-coated dishes, including recombinant vitronectin, laminin-511, laminin-521, fibronectin, and collagen I. The flow cytometry was used to evaluate the expression of MSC markers (CD44, CD73, CD90, and CD105) on hPSC-MSCs, and the differentiation abilities of hPSC-MSCs into osteoblasts, chondrocytes, and adipocytes were evaluated. Laminin-521 and Collagen type I were found to be the top two best cell culture biomaterials for hPSCs differentiation into hMSCs. Although hPSCs differentiated on all ECM protein-coated dishes showed similar hMSC characteristics such as cell morphology, the cells cultured on Laminin-521-coated and Collagen type I-coated dishes showed good (short) doubling time and the highest MSC marker expression in this study. Therefore, Laminin-521 coated surface is considered to be the most reliable and xeno-free cell culture biomaterial for hPSC-MSCs preparation. Besides, in previous studies in our laboratory, hPSCs were cultured on polyvinyl alcohol-co-itaconic acid (PVA-IA) hydrogels, which were conjugated with oligo-vitronectin (KGGPQVTRGDVFTMP) and laminin beta 4-derived peptide (PMQKMRGDVFSP). They found that insertion of the positive joint segment (KGG) on the oligopeptides could improve the hPSC cultivation. Several molecular designs of oligopeptide-grafted hydrogels having an optimal number of positive joint segments were developed in this study, which supported the proliferation of hESCs while hESCs maintained their pluripotency and differentiation ability into hMSCs under xeno-free cell culture conditions. Especially, new oligopeptides of laminin-derived peptides (PMQKMRGDVFSP) with different numbers of positive joint segments were grafted on PVA-IA hydrogels. PVA-IA hydrogels grafted with these synthetic peptides were investigated to support long-term hESCs cultivation and differentiation into hMSCs. PVA-IA hydrogels grafted with KLBC2K (adding the positive amino acid in front of the linker) and LB2CKKK (which has more positive joint segments between the linker and the main chain) were stable for hESC long-term cultivation and can promote differentiation of hESCs into hMSC. After hESC cultivation on those synthetic peptides-grafted PVA_IA hydrogels, hESCs were evaluated for the expression level of four pluripotent protein (Oct4, Sox2, and Nanog) expression. Furthermore, hESC-MSCs cultured on PVA-IA hydrogels grafted with LB2CK and KLB2CK showed better doubling time and higher MSC marker expression than those cultured on PVA-IA hydrogels grafted with another design of peptides in this study. Therefore, the KLB2CK grafted on the PVA-IA hydrogels surface is a reliable new design of oligopeptide for hPSC-MSCs differentiation. Live and dead staining and secretion of inflammatory cytokines were also evaluated after hPSC-MSCs were treated with allogeneic mononuclear cells to evaluate the protective effect of hPSC-MSCs from GVHD. It is expected that the present hPSC-MSCs can be widely applied for regenerative medicine in the future.
關鍵字(中) ★ 幹細胞
★ 生物材料
★ 無異種
★ 間充質幹細胞
★ 多能幹細胞
關鍵字(英) ★ stem cell
★ biomaterial
★ xeno-free
★ MSC
★ PSC
論文目次 Abstract I
摘要 IV
Index of Content VI
Index of Figures XII
Index of Table XX
Chapter 1. Introduction 1
1-1 Stem cell application in clinical trials 1
1-2 Stem cells 2
1-3 Human pluripotent stem cells (hPSC) 4
1-3-1 Human embryonic stem cells (hESCs) 5
1-3-2 Human induced pluripotent stem cells (hiPSC) 6
1-3-3 Characterization of hPSCs 7
1-3-4 The limitations of human pluripotent stem cells 9
1-4 Human mesenchymal stem cells (hMSCs) 10
1-4-1 Characterization of human mesenchymal stem cells 11
1-4-2 Differentiation abilities of human mesenchymal stem cells 13
1-4-2-1 Osteogenic differentiation of stem cells 13
1-4-2-2 Adipogenic differentiation of stem cells 15
1-4-2-3 Chondrogenic differentiation 15
1-4-3 The therapeutic application in future and the limitations of human mesenchymal stem cells 16
1-5 Biomaterials for hPSC cultivation 19
1-5-1 Human PSC culture on feeder-free and xeno-contained proteins 20
1-5-1-1 Matrigel 21
1-5-1-2 Collagen 21
1-5-2 Human PSC culture on feeder-free and xeno-free hECMs 22
1-5-2-1 Vitronectin 25
1-5-2-2 Laminin 25
1-5-2-3 Fibronectin 26
1-5-3 Oligopeptides 26
1-6 Differentiation of hPSCs into mesenchymal stem cells and modification of the differentiation methods 28
1-7 The goal of this study 29
Chapter 2. Materials and Method 32
2-1 Materials 32
2-1-1 Cell line 32
2-1-2 Commercial culture dishes 32
2-1-3 Commercial coating substrates 32
2-1-4 Medium and others 33
2-1-4-1 Cell culture medium 33
2-1-4-2 Cell passage 34
2-1-4-3 Phosphate buffered saline solution (PBS) 34
2-1-4-4 The chemicals in oligopeptide-grafted dish 34
2-1-5 Chemicals for immunostaining 37
2-1-5-1 Primary antibodies 37
2-1-5-2 Second antibody 38
2-1-5-3 Other 38
2-1-6 Chemical for flow cytometry 38
2-1-7 RNA extraction kit 39
2-1-8 Reverse transcription kit 39
2-1-9 Real-time polymerization chain reaction 39
2-1-10 qRT-PCR probe 39
2-1-11 Osteogenic differentiation analysis 40
2-1-11-1 Homemade medium 40
2-1-11-2 Alkaline phosphate assay 40
2-1-11-3 Alizarin red S staining 40
2-1-11-4 von Kossa staining 40
2-1-12 Chondrogenic differentiation analysis 40
2-1-12-1 Alcian blue staining 40
2-1-13 Adipogenic differentiation analysis 41
2-1-13-1 Oil red O staining 41
2-2 Experimental instruments 41
2-3 Experimental methods 41
2-3-1 The protocol of hPSCs differentiation into hMSCs 41
2-3-2 Preparation of the cell culture medium for human mesenchymal stem cells (hMSCs) 43
2-3-3 Passage method of human mesenchymal stem cells 44
2-3-4 Characterization of hMSCs 45
2-3-4-1 Doubling time of hMSCs 45
2-3-4-2 Flow cytometry measurements 46
2-3-5 Osteogenic differentiation 46
2-3-5-1 Preparation of homemade osteogenic differentiation medium 47
2-3-5-2 Alkaline phosphate (ALP) activity measurement 47
2-3-5-3 Alizarin red S staining assay 48
2-3-5-4 von Kossa staining assay 48
2-3-6 Chondrogenic differentiation 49
2-3-6-1 Alcian blue staining of chondrocytes 50
2-3-7 Isolation of mononuclear cells 50
2-3-8 Live and Dead staining of the cells 52
2-3-9 Maintenance of human pluripotent stem cells and their passage 52
2-3-10 Characterization of hPSCs 53
2-3-10-1 Cell density measurement 53
2-3-10-2 Differentiation rate of hPSCs colonies 55
2-3-10-3 Expansion fold change of hPSCs 55
2-3-10-4 Immunofluorescence staining of the cells 55
2-3-10-5 Embryoid body (EB) formation in vitro 59
2-3-11 Characterization of biomaterial surfaces 60
2-3-11-1 X-ray photoelectron spectroscopy (XPS) measurements 60
2-3-11-2 Zeta potential measurements 61
2-3-12 Preparation of PVA-IA hydrogel-coated dish 61
2-3-13 Preparation of oligopeptides grafted PVA-IA hydrogels 63
Chapter 3 Results and Discussion 64
3-1 Differentiation method of hiPSCs into hMSCs 64
3-1-1 The morphology and doubling time of hMSCs differentiation from hPSCs on different ECM protein-coated dishes 66
3-1-2 The morphology and doubling time of hPSCs-derived MSCs on different ECM protein-coated dishes for long-term cultivation 75
3-1-3 Identification of the hESC-derived MSCs cultured on different ECM protein-coated dishes from MSC surface marker expression analysis using flow cytometry 78
3-1-4 Identification of the hiPSC-derived MSCs cultured on different ECM protein-coated dishes from MSC surface marker expressions analysis using flow cytometry 82
3-1-5 Morphology of osteogenic differentiation of hPSC-derived MSCs on different ECM protein-coated dishes at passage 10 88
3-1-6 The early-stage analysis of osteogenic differentiation of hiPSC-derived MSCs on different ECM protein-coated dishes at passage 10 91
3-1-7 The late-stage analysis of osteogenic differentiation of hiPSC-derived MSCs on different ECM protein-coated dishes at passage 10 93
3-2 Cultivation of hPSCs on PVA-IA hydrogels grafted with oligopeptides 97
3-2-1 Cultivation of hPSCs on PVA-IA hydrogels grafted with different oligopeptides derived from laminin β4 chain and vitronectin 97
3-2-2 Expansion fold of hESCs cultured on PVA-IA hydrogels grafted with LN-β4 derived oligopeptides and VN derived oligopeptides for 10 passages 100
3-2-3 Differentiation ratio of hESCs cultured on PVA-IA hydrogels grafted with LN-β4 derived oligopeptides and VN derived oligopeptides for 10 passages 102
3-2-4 Immunostaining of hESCs cultured on PVA-IA hydrogels grafted with LN-β4 derived oligopeptides and VN derived oligopeptides for 5 and 10 passages 103
3-2-5 SSEA4 surface marker expression of hESCs cultured on PVA-IA hydrogels grafted with LN-β4 derived oligopeptides and VN derived oligopeptides for 10 passages via flow cytometry 107
3-2-6 Embryoid body formation of hESCs cultured on PVA-IA hydrogels grafted with LN-β4 derived oligopeptides and VN derived oligopeptides for 5 passages 108
3-3 Characterization of PVA-IA hydrogels grafted with previous and new designs of oligopeptides 111
3-3-1 Zeta potential analysis of the effect of surface charge on different biomaterials 111
3-3-2 X-ray photoelectron spectroscopy (XPS) analysis for different biomaterials 113
3-4 hESCs differentiation into hMSCs on PVA-IA hydrogels grafted with LN-β4 derived oligopeptides and VN derived oligopeptides 117
3-4-1 The morphology and doubling time of hESC differentiation into hMSCs on different PVA-IA hydrogels grafted with LN-β4 derived oligopeptides and VN derived oligopeptides 118
3-4-2 Flow cytometry of the hPSC-MSCs cultured on different PVA-IA hydrogels grafted with LN-β4 derived oligopeptides for MSC surface marker analysis 121
Chapter 4. Conclusions 124
References 127
Supplementary Data 140
參考文獻 [1] A.Heidary Rouchi andM.Mahdavi-Mazdeh, “Regenerative medicine in organ and tissue transplantation: Shortly and practically achievable?,” Int. J. Organ Transplant. Med., vol. 6, no. 3, pp. 93–98, 2015.
[2] M.Mimeault, R.Hauke, andS. K.Batra, “Stem cells: A revolution in therapeutics - Recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies,” Clin. Pharmacol. Ther., vol. 82, no. 3, pp. 252–264, 2007, doi: 10.1038/sj.clpt.6100301.
[3] S.Jha, N.Jha, andA.Sharma, “Stem cell therapy in treatment of diseases,” J. Crit. Rev., vol. 7, no. 3, pp. 855–858, 2020, doi: 10.31838/jcr.07.03.149.
[4] H. M.Blau andG. Q.Daley, “Stem Cells in the Treatment of Disease,” N. Engl. J. Med., vol. 380, no. 18, pp. 1748–1760, 2019, doi: 10.1056/nejmra1716145.
[5] J. K.Biehl andB.Russell, “Introduction to Stem Cell Therapy,” J. Cardiovasc. Nurs., vol. 24, no. 2, pp. 98–103, 2009, doi: 10.1097/JCN.0b013e318197a6a5.
[6] W.Zakrzewski, M.Dobrzyński, M.Szymonowicz, andZ.Rybak, “Stem cells: past, present, and future,” Stem Cell Res. Ther., vol. 10, no. 1, p. 68, Dec.2019, doi: 10.1186/s13287-019-1165-5.
[7] P.T. Brown, A.M. Handorf, W.Bae Jeon, andW.-J.Li, “Stem Cell-based Tissue Engineering Approaches for Musculoskeletal Regeneration,” Curr. Pharm. Des., vol. 19, no. 19, pp. 3429–3445, 2013, doi: 10.2174/13816128113199990350.
[8] M.Tewary, N.Shakiba, andP. W.Zandstra, “Stem cell bioengineering: building from stem cell biology,” Nat. Rev. Genet., vol. 19, no. 10, pp. 595–614, 2018, doi: 10.1038/s41576-018-0040-z.
[9] M.Berdasco andM.Esteller, “DNA methylation in stem cell renewal and multipotency,” Stem Cell Res. Ther., vol. 2, no. 5, 2011, doi: 10.1186/scrt83.
[10] S.Menon, S.Shailendra, A.Renda, M.Longaker, andN.Quarto, “An overview of direct somatic reprogramming: The ins and outs of iPSCs,” Int. J. Mol. Sci., vol. 17, no. 1, 2016, doi: 10.3390/ijms17010141.
[11] C.Kaebisch, D.Schipper, P.Babczyk, andE.Tobiasch, “The role of purinergic receptors in stem cell differentiation,” Comput. Struct. Biotechnol. J., vol. 13, pp. 75–84, 2015, doi: 10.1016/j.csbj.2014.11.003.
[12] D.Ilic andJ. M.Polak, “Stem cells in regenerative medicine: Introduction:,” Br. Med. Bull., vol. 98, no. 1, pp. 117–126, 2011, doi: 10.1093/bmb/ldr012.
[13] K. H.Narsinh, J.Plews, andJ. C.Wu, “Comparison of human induced pluripotent and embryonic stem cells: Fraternal or identical twins?,” Mol. Ther., vol. 19, no. 4, pp. 635–638, 2011, doi: 10.1038/mt.2011.41.
[14] G.Amabile andA.Meissner, “Induced pluripotent stem cells: current progress and potential for regenerative medicine,” Trends Mol. Med., vol. 15, no. 2, pp. 59–68, 2009, doi: 10.1016/j.molmed.2008.12.003.
[15] J. A.Thomson, “Embryonic stem cell lines derived from human blastocysts,” Science (80-. )., vol. 282, no. 5391, pp. 1145–1147, 1998, doi: 10.1126/science.282.5391.1145.
[16] K. H. S.Campbell, J.McWhir, W. A.Ritchie, andI.Wilmut, “Sheep cloned by nuclear transfer from a cultured cell line,” Nature, vol. 380, no. 6569, pp. 64–66, 1996, doi: 10.1038/380064a0.
[17] K.Takahashi andS.Yamanaka, “Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors,” Cell, vol. 126, no. 4, pp. 663–676, 2006, doi: 10.1016/j.cell.2006.07.024.
[18] S.Yamanaka, “Induced pluripotent stem cells: Past, present, and future,” Cell Stem Cell, vol. 10, no. 6, pp. 678–684, 2012, doi: 10.1016/j.stem.2012.05.005.
[19] K.Takahashi et al., “Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors,” Cell, vol. 131, no. 5, pp. 861–872, 2007, doi: 10.1016/j.cell.2007.11.019.
[20] A.DiRuscio, F.Patti, R. S.Welner, D. G.Tenen, andG.Amabile, “Multiple sclerosis: Getting personal with induced pluripotent stem cells,” Cell Death Dis., vol. 6, no. 7, pp. 1–7, 2015, doi: 10.1038/cddis.2015.179.
[21] A.Higuchi et al., “Design of polymeric materials for culturing human pluripotent stem cells: Progress toward feeder-free and xeno-free culturing,” Prog. Polym. Sci., vol. 39, no. 7, pp. 1348–1374, 2014, doi: 10.1016/j.progpolymsci.2014.01.002.
[22] A.Higuchi et al., “Physical cues of cell culture materials lead the direction of differentiation lineages of pluripotent stem cells,” J. Mater. Chem. B, vol. 3, no. 41, pp. 8032–8058, 2015, doi: 10.1039/c5tb01276g.
[23] R.Bernad, C. J.Lynch, R. G.Urdinguio, C.Stephan-Otto Attolini, M. F.Fraga, andM.Serrano, “Stability of Imprinting and Differentiation Capacity in Naïve Human Cells Induced by Chemical Inhibition of CDK8 and CDK19,” Cells, vol. 10, no. 4, p. 876, Apr.2021, doi: 10.3390/cells10040876.
[24] M. J.Shamblott et al., “Derivation of pluripotent stem cells from cultured human primordial germ cells,” Proc. Natl. Acad. Sci. U. S. A., vol. 95, no. 23, pp. 13726–13731, 1998, doi: 10.1073/pnas.95.23.13726.
[25] A.Higuchi, Q. D.Ling, Y. A.Ko, Y.Chang, andA.Umezawa, “Biomaterials for the feeder-free culture of human embryonic stem cells and induced pluripotent stem cells,” Chem. Rev., vol. 111, no. 5, pp. 3021–3035, 2011, doi: 10.1021/cr1003612.
[26] H.Bai andZ. Z.Wang, “Directing human embryonic stem cells to generate vascular progenitor cells,” Gene Ther., vol. 15, no. 2, pp. 89–95, Jan.2008, doi: 10.1038/sj.gt.3303005.
[27] K.Tano, S.Yasuda, T.Kuroda, H.Saito, A.Umezawa, andY.Sato, “A novel in vitro method for detecting undifferentiated human pluripotent stem cells as impurities in cell therapy products using a highly efficient culture system,” PLoS One, vol. 9, no. 10, 2014, doi: 10.1371/journal.pone.0110496.
[28] H.Donnelly, M.Salmeron-Sanchez, andM. J.Dalby, “Designing stem cell niches for differentiation and self-renewal,” J. R. Soc. Interface, vol. 15, no. 145, 2018, doi: 10.1098/rsif.2018.0388.
[29] H.Ibraheim, C.Giacomini, Z.Kassam, F.Dazzi, andN.Powell, “Advances in mesenchymal stromal cell therapy in the management of Crohn’s disease,” Expert Rev. Gastroenterol. Hepatol., vol. 12, no. 2, pp. 141–153, 2018, doi: 10.1080/17474124.2018.1393332.
[30] J. R.Ferreira, G. Q.Teixeira, S. G.Santos, M. A.Barbosa, G.Almeida-Porada, andR. M.Gonçalves, “Mesenchymal stromal cell secretome: Influencing therapeutic potential by cellular pre-conditioning,” Front. Immunol., vol. 9, no. December, pp. 1–17, 2018, doi: 10.3389/fimmu.2018.02837.
[31] J.Penny, P.Harris, K.Shakesheff, andA.Mobasheri, “The biology of equine mesenchymal stem cells: Phenotypic characterization, cell surface markers and multilineage differentiation,” Front. Biosci., vol. 17, no. 3, pp. 892–908, 2012, doi: 10.2741/3963.
[32] R. R.Sharma, K.Pollock, A.Hubel, andD.McKenna, “Mesenchymal stem or stromal cells: a review of clinical applications and manufacturing practices,” Transfusion, vol. 54, no. 5, pp. 1418–1437, May2014, doi: 10.1111/trf.12421.
[33] K.Hynes, D.Menicanin, K.Mrozik, S.Gronthos, andP. M.Bartold, “Generation of functional mesenchymal stem cells from different induced pluripotent stem cell lines,” Stem Cells Dev., vol. 23, no. 10, pp. 1084–1096, 2014, doi: 10.1089/scd.2013.0111.
[34] S.Aggarwal andM. F.Pittenger, “Human mesenchymal stem cells modulate allogeneic immune cell responses,” Blood, vol. 105, no. 4, pp. 1815–1822, 2005, doi: 10.1182/blood-2004-04-1559.
[35] A.Manuscript, “Mesenchymal stem cell-educated macrophages: a novel type of,” vol. 37, no. 12, pp. 1445–1453, 2010, doi: 10.1016/j.exphem.2009.09.004.Mesenchymal.
[36] A.Augello, R.Tasso, S. M.Negrini, R.Cancedda, andG.Pennesi, “Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis,” Arthritis Rheum., vol. 56, no. 4, pp. 1175–1186, Apr.2007, doi: 10.1002/art.22511.
[37] G. M.Spaggiari, A.Capobianco, H.Abdelrazik, F.Becchetti, M. C.Mingari, andL.Moretta, “Mesenchymal stem cells inhibit natural killer–cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2,” Blood, vol. 111, no. 3, pp. 1327–1333, Feb.2008, doi: 10.1182/blood-2007-02-074997.
[38] W. D.Shlomchik et al., “Prevention of graft versus host disease by inactivation of host antigen- presenting cells,” Science (80-. )., vol. 285, no. 5426, pp. 412–415, 1999, doi: 10.1126/science.285.5426.412.
[39] W. X.Gao et al., “Effects of mesenchymal stem cells from human induced pluripotent stem cells on differentiation, maturation, and function of dendritic cells,” Stem Cell Res. Ther., vol. 8, no. 1, pp. 1–16, 2017, doi: 10.1186/s13287-017-0499-0.
[40] G.Chamberlain, J.Fox, B.Ashton, andJ.Middleton, “Concise Review: Mesenchymal Stem Cells: Their Phenotype, Differentiation Capacity, Immunological Features, and Potential for Homing,” Stem Cells, vol. 25, no. 11, pp. 2739–2749, Nov.2007, doi: 10.1634/stemcells.2007-0197.
[41] X.Zhou, N.Jin, F.Wang, andB.Chen, “Mesenchymal stem cells: A promising way in therapies of graft-versus-host disease,” Cancer Cell Int., vol. 20, no. 1, pp. 1–11, 2020, doi: 10.1186/s12935-020-01193-z.
[42] S. K. W.Oh andA. B. H.Choo, “Stem Cells,” Compr. Biotechnol. Second Ed., vol. 1, pp. 341–365, 2011, doi: 10.1016/B978-0-08-088504-9.00038-6.
[43] A. J.Engler, S.Sen, H. L.Sweeney, andD. E.Discher, “Matrix Elasticity Directs Stem Cell Lineage Specification,” Cell, vol. 126, no. 4, pp. 677–689, 2006, doi: 10.1016/j.cell.2006.06.044.
[44] M. S.Friedman, M. W.Lone, andK. D.Hankenson, “Osteogenic differentiation of human mesenchymal stem cells is regulated by bone morphogenetic protein-6,” J. Cell. Biochem., vol. 98, no. 3, pp. 538–554, 2006, doi: 10.1002/jcb.20719.
[45] A.Higuchi, Q. D.Ling, S. T.Hsu, andA.Umezawa, “Biomimetic cell culture proteins as extracellular matrices for stem cell differentiation,” Chem. Rev., vol. 112, no. 8, pp. 4507–4540, 2012, doi: 10.1021/cr3000169.
[46] J.Pan et al., “Culture and differentiation of purified human adipose-derived stem cells by membrane filtration: via nylon mesh filters,” J. Mater. Chem. B, vol. 8, no. 24, pp. 5204–5214, 2020, doi: 10.1039/d0tb00947d.
[47] C.Shen, C.Yang, S.Xu, andH.Zhao, “Comparison of osteogenic differentiation capacity in mesenchymal stem cells derived from human amniotic membrane (AM), umbilical cord (UC), chorionic membrane (CM), and decidua (DC),” Cell Biosci., vol. 9, no. 1, pp. 1–11, 2019, doi: 10.1186/s13578-019-0281-3.
[48] S.Muduli et al., “Proliferation and osteogenic differentiation of amniotic fluid-derived stem cells,” J. Mater. Chem. B, vol. 5, no. 27, pp. 5345–5354, 2017, doi: 10.1039/c7tb01152k.
[49] Y.Zhu, T.Liu, K.Song, X.Fan, X.Ma, andZ.Cui, “Adipose-derived stem cell: A better stem cell than BMSC,” Cell Biochem. Funct., vol. 26, no. 6, pp. 664–675, 2008, doi: 10.1002/cbf.1488.
[50] S. P.Poulos, M.V.Dodson, andG. J.Hausman, “Cell line models for differentiation: Preadipocytes and adipocytes,” Exp. Biol. Med., vol. 235, no. 10, pp. 1185–1193, 2010, doi: 10.1258/ebm.2010.010063.
[51] A. W.James, “Review of Signaling Pathways Governing MSC Osteogenic and Adipogenic Differentiation,” Scientifica (Cairo)., vol. 2013, pp. 1–17, 2013, doi: 10.1155/2013/684736.
[52] S.Miettinen, J. R.Sarkanen, andN.Ashammakhi, “Adipose Tissue and Adipocyte Differentiation: Molecular and Cellular Aspects and Tissue Engineering Applications,” Top. Tissue Eng., vol. 4, pp. 1–26, 2008.
[53] A.Higuchi et al., “Differentiation ability of adipose-derived stem cells separated from adipose tissue by a membrane filtration method,” J. Memb. Sci., vol. 366, no. 1–2, pp. 286–294, 2011, doi: 10.1016/j.memsci.2010.10.009.
[54] C.Chung andJ. A.Burdick, “Engineering cartilage tissue,” Adv. Drug Deliv. Rev., vol. 60, no. 2, pp. 243–262, Jan.2008, doi: 10.1016/j.addr.2007.08.027.
[55] S. E.Carver andC. A.Heath, “Increasing extracellular matrix production in regenerating cartilage with intermittent physiological pressure,” Biotechnol. Bioeng., vol. 62, no. 2, pp. 166–174, Jan.1999, doi: 10.1002/(SICI)1097-0290(19990120)62:2<166::AID-BIT6>3.0.CO;2-K.
[56] S.Saha, J.Kirkham, D. J.Wood, andX. B.Yang, “Progenitor and stem cell therapies for cartilage repair,” Progenit. Stem Cell Technol. Ther., pp. 391–417, 2012, doi: 10.1533/9780857096074.3.391.
[57] L. A.Solchaga, K. J.Penick, andJ. F.Welter, Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells: tips and tricks., vol. 698, no. 12. 2011.
[58] G.Putz, M.A, andA.Danilkovitch-Miagkov, “Mesenchymal Stem Cells as Vehicles for Targeted Therapies,” Drug Discov. Dev. - Present Futur., no. December 2011, 2011, doi: 10.5772/29124.
[59] M.Compte et al., “Factory neovessels: Engineered human blood vessels secreting therapeutic proteins as a new drug delivery system,” Gene Ther., vol. 17, no. 6, pp. 745–751, 2010, doi: 10.1038/gt.2010.33.
[60] X.Wei, X.Yang, Z. P.Han, F. F.Qu, L.Shao, andY. F.Shi, “Mesenchymal stem cells: A new trend for cell therapy,” Acta Pharmacol. Sin., vol. 34, no. 6, pp. 747–754, 2013, doi: 10.1038/aps.2013.50.
[61] O.Hovatta, M.Stojkovic, M.Nogueira, andI.Varela-Nieto, “European scientific, ethical, and legal issues on human stem cell research and regenerative medicine.,” Stem Cells, vol. 28, no. 6, pp. 1005–1007, 2010, doi: 10.1002/stem.436.
[62] A. R.Muslimov et al., “Biomimetic drug delivery platforms based on mesenchymal stem cells impregnated with light-responsive submicron sized carriers,” Biomater. Sci., vol. 8, no. 4, pp. 1137–1147, 2020, doi: 10.1039/c9bm00926d.
[63] V.Turinetto, E.Vitale, andC.Giachino, “Senescence in human mesenchymal stem cells: Functional changes and implications in stem cell-based therapy,” Int. J. Mol. Sci., vol. 17, no. 7, pp. 1–18, 2016, doi: 10.3390/ijms17071164.
[64] A.Trounson, R. G.Thakar, G.Lomax, andD.Gibbons, “Clinical trials for stem cell therapies,” BMC Med., vol. 9, no. 1, p. 52, Dec.2011, doi: 10.1186/1741-7015-9-52.
[65] A.Higuchi, H.-F.Li, S.Suresh Kumar, A. A.Alarfaj, andM. A.Munusamy, Stem Cell Culture on Polymer Hydrogels. Springer Singapore, 2018.
[66] A.Higuchi, Q. D.Ling, Y.Chang, S. T.Hsu, andA.Umezawa, “Physical cues of biomaterials guide stem cell differentiation fate,” Chem. Rev., vol. 113, no. 5, pp. 3297–3328, 2013, doi: 10.1021/cr300426x.
[67] A.Higuchi et al., “Polymeric design of cell culture materials that guide the differentiation of human pluripotent stem cells,” Prog. Polym. Sci., vol. 65, pp. 83–126, 2017, doi: 10.1016/j.progpolymsci.2016.09.002.
[68] D.Zhang et al., “Comparison of a xeno-free and serum-free culture system for human embryonic stem cells with conventional culture systems,” Stem Cell Res. Ther., vol. 7, no. 1, pp. 1–10, 2016, doi: 10.1186/s13287-016-0347-7.
[69] E. S.Rosler et al., “Long-term culture of human embryonic stem cells in feeder-free conditions,” Dev. Dyn., vol. 229, no. 2, pp. 259–274, Feb.2004, doi: 10.1002/dvdy.10430.
[70] N.Desai, P.Rambhia, andA.Gishto, “Human embryonic stem cell cultivation: Historical perspective and evolution of xeno-free culture systems,” Reprod. Biol. Endocrinol., vol. 13, no. 1, 2015, doi: 10.1186/s12958-015-0005-4.
[71] G.Yu, Y.Kamano, F.Wang, H.Okawa, H.Yatani, andH.Egusa, “Feeder Cell Sources and Feeder-Free Methods for Human iPS Cell Culture,” in Interface Oral Health Science 2014, K.Sasaki, O.Suzuki, andN.Takahashi, Eds.Tokyo: Springer Japan, 2015, pp. 145–159.
[72] S. K. W.Oh andA. B. H.Choo, “Human embryonic stem cell technology: Large scale cell amplification and differentiation,” Cytotechnology, vol. 50, no. 1–3, pp. 181–190, 2006, doi: 10.1007/s10616-005-3862-4.
[73] C. S.Hughes, L. M.Postovit, andG. A.Lajoie, “Matrigel: a complex protein mixture required for optimal growth of cell culture.,” Proteomics, vol. 10, no. 9, pp. 1886–1890, 2010, doi: 10.1002/pmic.200900758.
[74] C.Xu et al., “Feeder-free growth of undifferentiated human embryonic stem cells,” Nat. Biotechnol., vol. 19, no. 10, pp. 971–974, 2001, doi: 10.1038/nbt1001-971.
[75] F. T.Bosman andI.Stamenkovic, “Functional structure and composition of the extracellular matrix,” J. Pathol., vol. 200, no. 4, pp. 423–428, 2003, doi: 10.1002/path.1437.
[76] G. A.DiLullo, S. M.Sweeney, J.Körkkö, L.Ala-Kokko, andJ. D.San Antonio, “Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen,” J. Biol. Chem., vol. 277, no. 6, pp. 4223–4231, 2002, doi: 10.1074/jbc.M110709200.
[77] S.Ricard-Blum, “The Collagen Family,” Cold Spring Harb. Perspect. Biol., vol. 3, no. 1, pp. 1–19, 2011, doi: 10.1101/cshperspect.a004978.
[78] Y.Mei et al., “Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells,” Nat. Mater., vol. 9, no. 9, pp. 768–778, 2010, doi: 10.1038/nmat2812.
[79] S. M.Naqvi andL. M.McNamara, “Stem Cell Mechanobiology and the Role of Biomaterials in Governing Mechanotransduction and Matrix Production for Tissue Regeneration,” Front. Bioeng. Biotechnol., vol. 8, no. December, pp. 1–27, 2020, doi: 10.3389/fbioe.2020.597661.
[80] A. I.Aghmiuni andA. A.Khiavi, “Medicinal Plants to Calm and Treat Psoriasis Disease,” in Aromatic and Medicinal Plants - Back to Nature, InTech, 2017.
[81] I.Schvartz, D.Seger, andS.Shaltiel, “Vitronectin,” Int. J. Biochem. Cell Biol., vol. 31, no. 5, pp. 539–544, May1999, doi: 10.1016/S1357-2725(99)00005-9.
[82] L. Y. W.Yap et al., “Defining a threshold surface density of vitronectin for the stable expansion of human embryonic stem cells,” Tissue Eng. - Part C Methods, vol. 17, no. 2, pp. 193–207, 2011, doi: 10.1089/ten.tec.2010.0328.
[83] C.Chen, Z.Jiang, andG.Yang, “Laminins in osteogenic differentiation and pluripotency maintenance,” Differentiation, vol. 114, no. February, pp. 13–19, 2020, doi: 10.1016/j.diff.2020.05.002.
[84] Y.Li, S.Powell, E.Brunette, J.Lebkowski, andR.Mandalam, “Expansion of human embryonic stem cells in defined serum-free medium devoid of animal-derived products,” Biotechnol. Bioeng., vol. 91, no. 6, pp. 688–698, 2005, doi: 10.1002/bit.20536.
[85] J.Jia et al., “Development of peptide-functionalized synthetic hydrogel microarrays for stem cell and tissue engineering applications,” Acta Biomater., vol. 45, no. 3, pp. 110–120, Nov.2016, doi: 10.1016/j.actbio.2016.09.006.
[86] Z.Melkoumian et al., “Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells,” Nat. Biotechnol., vol. 28, no. 6, pp. 606–610, 2010, doi: 10.1038/nbt.1629.
[87] A.Higuchi et al., “Long-term xeno-free culture of human pluripotent stem cells on hydrogels with optimal elasticity,” Sci. Rep., vol. 5, pp. 1–16, 2015, doi: 10.1038/srep18136.
[88] Y. M.Chen et al., “Xeno-free culture of human pluripotent stem cells on oligopeptide-grafted hydrogels with various molecular designs,” Sci. Rep., vol. 7, no. February, pp. 1–16, 2017, doi: 10.1038/srep45146.
[89] M. D.Pierschbacher andE.Ruoslahti, “Can Be Duplicated By Small Synthetic Fragments of the Molecule,” Nature, pp. 3–6, 1984.
[90] S.Suzuki, A.Oldberg, E. G.Hayman, M. D.Pierschbacher, andE.Ruoslahti, “Complete amino acid sequence of human vitronectin deduced from cDNA. Similarity of cell attachment sites in vitronectin and fibronectin.,” EMBO J., vol. 4, no. 10, pp. 2519–2524, 1985, doi: 10.1002/j.1460-2075.1985.tb03965.x.
[91] A.Oldberg, A.Franzen, D.Heinegard, M.Pierschbacher, andE.Ruoslahti, “Identification of a bone sialoprotein receptor in osteosarcoma cells,” J. Biol. Chem., vol. 263, no. 36, pp. 19433–19436, 1988, doi: 10.1016/s0021-9258(19)77652-2.
[92] R. M.Salasznyk, W. A.Williams, A.Boskey, A.Batorsky, andG. E.Plopper, “Adhesion to vitronectin and collagen I promotes osteogenic differentiation of human mesenchymal stem cells,” J. Biomed. Biotechnol., vol. 2004, no. 1, pp. 24–34, 2004, doi: 10.1155/S1110724304306017.
[93] A.Higuchi et al., “Polymeric materials for ex vivo expansion of hematopoietic progenitor and stem cells,” Polym. Rev., vol. 49, no. 3, pp. 181–200, 2009, doi: 10.1080/15583720903048185.
[94] M.Nomizu et al., “Cell binding sequences in mouse laminin α1 chain,” J. Biol. Chem., vol. 273, no. 49, pp. 32491–32499, 1998, doi: 10.1074/jbc.273.49.32491.
[95] M. J.Cooke et al., “Neural differentiation regulated by biomimetic surfaces presenting motifs of extracellular matrix proteins,” J. Biomed. Mater. Res. - Part A, vol. 93, no. 3, pp. 824–832, 2010, doi: 10.1002/jbm.a.32585.
[96] X.Wang et al., “Immune modulatory mesenchymal stem cells derived from human embryonic stem cells through a trophoblast-like stage,” Stem Cells, vol. 34, no. 2, pp. 380–391, 2016, doi: 10.1002/stem.2242.
[97] A.Papadopoulou et al., “Mesenchymal stem cells are conditionally therapeutic in preclinical models of rheumatoid arthritis,” Ann. Rheum. Dis., vol. 71, no. 10, pp. 1733–1740, 2012, doi: 10.1136/annrheumdis-2011-200985.
[98] Q.Zhao et al., “MSCs derived from iPSCs with a modified protocol are tumor-tropic but have much less potential to promote tumors than bone marrow MSCs,” Proc. Natl. Acad. Sci. U. S. A., vol. 112, no. 2, pp. 530–535, 2015, doi: 10.1073/pnas.1423008112.
[99] E. I.Ozay et al., “CymerusTM iPSC-MSCs significantly prolong survival in a pre-clinical, humanized mouse model of Graft-vs-host disease,” Stem Cell Res., vol. 35, p. 101401, Mar.2019, doi: 10.1016/j.scr.2019.101401.
[100] C.Zhao andM.Ikeya, “Generation and Applications of Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells,” Stem Cells Int., vol. 2018, 2018, doi: 10.1155/2018/9601623.
[101] E.Li, Z.Zhang, B.Jiang, L.Yan, J. W.Park, andR. H.Xu, “Generation of mesenchymal stem cells from human embryonic stem cells in a complete serum-free condition,” Int. J. Biol. Sci., vol. 14, no. 13, pp. 1901–1909, 2018, doi: 10.7150/ijbs.25306.
[102] G.Lin, K.Martins-Taylor, andR.-H.Xu, “Human Embryonic Stem Cell Derivation, Maintenance, and Differentiation to Trophoblast,” in An Automated Irrigation System Using Arduino Microcontroller, vol. 1908, no. January, 2010, pp. 1–24.
指導教授 樋口亞绀(Akon Higuchi) 審核日期 2021-8-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明