參考文獻 |
[1] Chu, S., & Majumdar, A. (2012). Opportunities and challenges for a sustainable energy future. nature, 488(7411), 294-303.
[2] Dunn, B., Kamath, H., & Tarascon, J.-M. (2011). Electrical energy storage for the grid: a battery of choices. Science, 334(6058), 928-935.
[3] Pillot, C. (2017). Lithium ion battery raw material supply & demand 2016–2025. Paper presented at the Proceedings of the Advanced Automotive Battery Conference, Mainz, Germany.
[4] Liu, K., Liu, Y., Lin, D., Pei, A., & Cui, Y. (2018). Materials for lithium-ion battery safety. Science advances, 4(6), eaas9820.
[5] Fan, L., Wei, S., Li, S., Li, Q., & Lu, Y. (2018). Recent progress of the solid‐state electrolytes for high‐energy metal‐based batteries. Advanced Energy Materials, 8(11), 1702657.
[6] Wright, P. V. (1975). Electrical conductivity in ionic complexes of poly (ethylene oxide). British polymer journal, 7(5), 319-327.
[7] Armand, M. (1994). The history of polymer electrolytes. Solid State Ionics, 69(3-4), 309-319.
[8] Zhang, Q., Liu, K., Ding, F., & Liu, X. (2017). Recent advances in solid polymer electrolytes for lithium batteries. Nano Research, 10(12), 4139-4174.
[9] Savoie, B. M., Webb, M. A., & Miller III, T. F. (2017). Enhancing cation diffusion and suppressing anion diffusion via Lewis-acidic polymer electrolytes. The journal of physical chemistry letters, 8(3), 641-646.
[10] Yao, P., Yu, H., Ding, Z., Liu, Y., Lu, J., Lavorgna, M., . . . Liu, X. (2019). Review on polymer-based composite electrolytes for lithium batteries. Frontiers in chemistry, 7, 522.
[11] Golodnitsky, D., Strauss, E., Peled, E., & Greenbaum, S. (2015). On order and disorder in polymer electrolytes. Journal of The Electrochemical Society, 162(14), A2551.
[12] White, R. P., & Lipson, J. E. (2016). Polymer free volume and its connection to the glass transition. Macromolecules, 49(11), 3987-4007.
[13] Das, D., Chandrasekaran, A., Venkatram, S., & Ramprasad, R. (2018). Effect of crystallinity on Li adsorption in polyethylene oxide. Chemistry of Materials, 30(24), 8804-8810.
[14] Liu, W., Zhang, X., Wu, F., & Xiang, Y. (2017). A study on PVDF-HFP gel polymer electrolyte for lithium-ion batteries. Paper presented at the IOP Conference Series: Materials Science and Engineering.
[15] Zhang, Y., Yang, B., Li, K., Hou, D., Zhao, C., & Wang, J. (2017). Electrospun
- 128 -
porous poly (tetrafluoroethylene-co-hexafluoropropylene-co-vinylidene fluoride) membranes for membrane distillation. RSC advances, 7(89), 56183-56193.
[16] Barbosa, J. C., Dias, J. P., Lanceros-Méndez, S., & Costa, C. M. (2018). Recent advances in poly (vinylidene fluoride) and its copolymers for lithium-ion battery separators. Membranes, 8(3), 45.
[17] Abbrent, S., Plestil, J., Hlavata, D., Lindgren, J., Tegenfeldt, J., & Wendsjö, Å. (2001). Crystallinity and morphology of PVdF–HFP-based gel electrolytes. Polymer, 42(4), 1407-1416.
[18] Zhang, J., Sun, B., Huang, X., Chen, S., & Wang, G. (2014). Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety. Scientific reports, 4(1), 1-7.
[19] Cao, J., Wang, L., He, X., Fang, M., Gao, J., Li, J., . . . Wang, J. (2013). In situ prepared nano-crystalline TiO 2–poly (methyl methacrylate) hybrid enhanced composite polymer electrolyte for Li-ion batteries. Journal of Materials Chemistry A, 1(19), 5955-5961.
[20] Liang, Y., Xia, Y., Zhang, S., Wang, X., Xia, X., Gu, C., . . . Tu, J. (2019). A preeminent gel blending polymer electrolyte of poly (vinylidene fluoride-hexafluoropropylene)-poly (propylene carbonate) for solid-state lithium ion batteries. Electrochimica Acta, 296, 1064-1069.
[21] Ramesh, S., Liew, C.-W., Morris, E., & Durairaj, R. (2010). Effect of PVC on ionic conductivity, crystallographic structural, morphological and thermal characterizations in PMMA–PVC blend-based polymer electrolytes. Thermochimica Acta, 511(1-2), 140-146.
[22] Zhang, J., Zhao, J., Yue, L., Wang, Q., Chai, J., Liu, Z., . . . Cui, G. (2015). Safety‐reinforced poly (propylene carbonate)‐based All‐solid‐state polymer electrolyte for ambient‐temperature solid polymer lithium batteries. Advanced Energy Materials, 5(24), 1501082.
[23] Han, D., Guo, Z., Chen, S., Xiao, M., Peng, X., Wang, S., & Meng, Y. (2018). Enhanced properties of biodegradable poly (propylene carbonate)/polyvinyl formal blends by melting compounding. Polymers, 10(7), 771.
[24] Zhang, J., Zang, X., Wen, H., Dong, T., Chai, J., Li, Y., . . . Ma, J. (2017). High-voltage and free-standing poly (propylene carbonate)/Li 6.75 La 3 Zr 1.75 Ta 0.25 O 12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery. Journal of Materials Chemistry A, 5(10), 4940-4948.
[25] Wang, C., Zhang, H., Li, J., Chai, J., Dong, S., & Cui, G. (2018). The interfacial evolution between polycarbonate-based polymer electrolyte and Li-metal anode. Journal of Power Sources, 397, 157-161.
[26] Sun, B., Xu, C., Mindemark, J., Gustafsson, T., Edström, K., & Brandell, D. (2015).
- 129 -
At the polymer electrolyte interfaces: the role of the polymer host in interphase layer formation in Li-batteries. Journal of Materials Chemistry A, 3(26), 13994-14000.
[27] Cherian, B. M., Leão, A. L., de Souza, S. F., Costa, L. M. M., de Olyveira, G. M., Kottaisamy, M., . . . Thomas, S. (2011). Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydrate Polymers, 86(4), 1790-1798.
[28] Jing, M.-x., Yang, H., Chen, H., Hua, S., Ju, B.-w., Zhou, Q., . . . Qin, S.-b. (2019). Effects of gelation behavior of PPC-based electrolyte on electrochemical performance of solid state lithium battery. SN Applied Sciences, 1(3), 205.
[29] Zhang, J., Yang, J., Dong, T., Zhang, M., Chai, J., Dong, S., . . . Cui, G. (2018). Aliphatic Polycarbonate‐Based Solid‐State Polymer Electrolytes for Advanced Lithium Batteries: Advances and Perspective. Small, 14(36), 1800821.
[30] Zhou, Q., Zhang, J., & Cui, G. (2018). Rigid–Flexible Coupling Polymer Electrolytes toward High‐Energy Lithium Batteries. Macromolecular Materials and Engineering, 303(11), 1800337.
[31] Zhu, L., Zhu, P., Yao, S., Shen, X., & Tu, F. (2019). High‐performance solid PEO/PPC/LLTO‐nanowires polymer composite electrolyte for solid‐state lithium battery. International Journal of Energy Research, 43(9), 4854-4866.
[32] Zhang, J., Yue, L., Hu, P., Liu, Z., Qin, B., Zhang, B., . . . Zhou, X. (2014). Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries. Scientific reports, 4(1), 1-7.
[33] Song, J., Ryou, M.-H., Son, B., Lee, J.-N., Lee, D. J., Lee, Y. M., . . . Park, J.-K. (2012). Co-polyimide-coated polyethylene separators for enhanced thermal stability of lithium ion batteries. Electrochimica Acta, 85, 524-530.
[34] Cho, T.-H., Tanaka, M., Ohnishi, H., Kondo, Y., Yoshikazu, M., Nakamura, T., & Sakai, T. (2010). Composite nonwoven separator for lithium-ion battery: Development and characterization. Journal of Power Sources, 195(13), 4272-4277.
[35] Wang, D., Yu, J., Zhang, J., He, J., & Zhang, J. (2013). Transparent bionanocomposites with improved properties from poly (propylene carbonate)(PPC) and cellulose nanowhiskers (CNWs). Composites Science and Technology, 85, 83-89.
[36] Zhao, J., Zhang, J., Hu, P., Ma, J., Wang, X., Yue, L., . . . Zhou, X. (2016). A sustainable and rigid-flexible coupling cellulose-supported poly (propylene carbonate) polymer electrolyte towards 5 V high voltage lithium batteries. Electrochimica Acta, 188, 23-30.
[37] Zhou, D., Zhou, R., Chen, C., Yee, W.-A., Kong, J., Ding, G., & Lu, X. (2013). Non-volatile polymer electrolyte based on poly (propylene carbonate), ionic liquid, and lithium perchlorate for electrochromic devices. The Journal of Physical Chemistry B, 117(25), 7783-7789.
- 130 -
[38] Bachman, J. C., Muy, S., Grimaud, A., Chang, H.-H., Pour, N., Lux, S. F., . . . Lamp, P. (2016). Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chemical reviews, 116(1), 140-162.
[39] Wang, C., Fu, K., Kammampata, S. P., McOwen, D. W., Samson, A. J., Zhang, L., . . . Mo, Y. (2020). Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chemical reviews, 120(10), 4257-4300.
[40] Thangadurai, V., Kaack, H., & Weppner, W. J. (2003). Novel fast lithium ion conduction in garnet‐type Li5La3M2O12 (M= Nb, Ta). Journal of the American Ceramic Society, 86(3), 437-440.
[41] Zhu, Y., He, X., & Mo, Y. (2015). Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS applied materials & interfaces, 7(42), 23685-23693.
[42] Deiseroth, H. J., Kong, S. T., Eckert, H., Vannahme, J., Reiner, C., Zaiß, T., & Schlosser, M. (2008). Li6PS5X: a class of crystalline Li‐rich solids with an unusually high Li+ mobility. Angewandte Chemie, 120(4), 767-770.
[43] Kim, Y., Yoo, A., Schmidt, R., Sharafi, A., Lee, H., Wolfenstine, J., & Sakamoto, J. (2016). Electrochemical stability of Li6. 5La3Zr1. 5M0. 5O12 (M= Nb or Ta) against metallic lithium. Frontiers in Energy Research, 4, 20.
[44] Thangadurai, V., Narayanan, S., & Pinzaru, D. (2014). Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chemical Society Reviews, 43(13), 4714-4727.
[45] Wells, A. F. (2012). Structural inorganic chemistry: Oxford university press.
[46] O’Callaghan, M. P., Powell, A. S., Titman, J. J., Chen, G. Z., & Cussen, E. J. (2008). Switching on fast lithium ion conductivity in garnets: the structure and transport properties of Li3+ x Nd3Te2− x Sb x O12. Chemistry of Materials, 20(6), 2360-2369.
[47] O′Callaghan, M. P., Lynham, D. R., Cussen, E. J., & Chen, G. Z. (2006). Structure and ionic-transport properties of lithium-containing garnets Li3Ln3Te2O12 (Ln= Y, Pr, Nd, Sm− Lu). Chemistry of Materials, 18(19), 4681-4689.
[48] Murugan, R., Thangadurai, V., & Weppner, W. (2007). Fast lithium ion conduction in garnet‐type Li7La3Zr2O12. Angewandte Chemie International Edition, 46(41), 7778-7781.
[49] Thangadurai, V., & Weppner, W. (2005). Li6ALa2Ta2O12 (A= Sr, Ba): novel garnet‐like oxides for fast lithium ion conduction. Advanced Functional Materials, 15(1), 107-112.
[50] Li, Y., Han, J.-T., Wang, C.-A., Xie, H., & Goodenough, J. B. (2012). Optimizing Li+ conductivity in a garnet framework. Journal of Materials Chemistry, 22(30), 15357-15361.
[51] Awaka, J., Kijima, N., Hayakawa, H., & Akimoto, J. (2009). Synthesis and structure
- 131 -
analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. Journal of solid state chemistry, 182(8), 2046-2052.
[52] Narayanan, S., Hitz, G. T., Wachsman, E. D., & Thangadurai, V. (2015). Effect of excess Li on the structural and electrical properties of garnet-type Li6La3Ta1. 5Y0. 5O12. Journal of The Electrochemical Society, 162(9), A1772.
[53] Murugan, R., Weppner, W., Schmid-Beurmann, P., & Thangadurai, V. (2007). Structure and lithium ion conductivity of bismuth containing lithium garnets Li5La3Bi2O12 and Li6SrLa2Bi2O12. Materials Science and Engineering: B, 143(1-3), 14-20.
[54] He, M., Cui, Z., Chen, C., Li, Y., & Guo, X. (2018). Formation of self-limited, stable and conductive interfaces between garnet electrolytes and lithium anodes for reversible lithium cycling in solid-state batteries. Journal of Materials Chemistry A, 6(24), 11463-11470.
[55] Ramzy, A., & Thangadurai, V. (2010). Tailor-made development of fast Li ion conducting garnet-like solid electrolytes. ACS applied materials & interfaces, 2(2), 385-390.
[56] Zeier, W. G. (2014). Structural limitations for optimizing garnet-type solid electrolytes: a perspective. Dalton Transactions, 43(43), 16133-16138.
[57] Awaka, J., Takashima, A., Kataoka, K., Kijima, N., Idemoto, Y., & Akimoto, J. (2011). Crystal structure of fast lithium-ion-conducting cubic Li7La3Zr2O12. Chemistry letters, 40(1), 60-62.
[58] Wagner, R., Redhammer, G. n. J., Rettenwander, D., Senyshyn, A., Schmidt, W., Wilkening, M., & Amthauer, G. (2016). Crystal structure of garnet-related Li-ion conductor Li7–3 x Ga x La3Zr2O12: fast Li-ion conduction caused by a different cubic modification? Chemistry of Materials, 28(6), 1861-1871.
[59] Han, J., Zhu, J., Li, Y., Yu, X., Wang, S., Wu, G., . . . Momma, K. (2012). Experimental visualization of lithium conduction pathways in garnet-type Li 7 La 3 Zr 2 O 12. Chemical Communications, 48(79), 9840-9842.
[60] Baral, A. K., Narayanan, S., Ramezanipour, F., & Thangadurai, V. (2014). Evaluation of fundamental transport properties of Li-excess garnet-type Li 5+ 2x La 3 Ta 2− x Y x O 12 (x= 0.25, 0.5 and 0.75) electrolytes using AC impedance and dielectric spectroscopy. Physical Chemistry Chemical Physics, 16(23), 11356-11365.
[61] Samson, A. J., Hofstetter, K., Bag, S., & Thangadurai, V. (2019). A bird′s-eye view of Li-stuffed garnet-type Li 7 La 3 Zr 2 O 12 ceramic electrolytes for advanced all-solid-state Li batteries. Energy & Environmental Science, 12(10), 2957-2975.
[62] Xu, M., Ding, J., & Ma, E. (2012). One-dimensional stringlike cooperative migration of lithium ions in an ultrafast ionic conductor. Applied Physics Letters, 101(3), 031901.
- 132 -
[63] Logéat, A., Köhler, T., Eisele, U., Stiaszny, B., Harzer, A., Tovar, M., . . . Kozinsky, B. (2012). From order to disorder: The structure of lithium-conducting garnets Li7− xLa3TaxZr2− xO12 (x= 0–2). Solid State Ionics, 206, 33-38.
[64] Li, Y., Han, J.-T., Wang, C.-A., Vogel, S. C., Xie, H., Xu, M., & Goodenough, J. B. (2012). Ionic distribution and conductivity in lithium garnet Li7La3Zr2O12. Journal of Power Sources, 209, 278-281.
[65] Il’ina, E., Andreev, O., Antonov, B., & Batalov, N. (2012). Morphology and transport properties of the solid electrolyte Li7La3Zr2O12 prepared by the solid-state and citrate–nitrate methods. Journal of Power Sources, 201, 169-173.
[66] Rangasamy, E., Wolfenstine, J., Allen, J., & Sakamoto, J. (2013). The effect of 24c-site (A) cation substitution on the tetragonal–cubic phase transition in Li7− xLa3− xAxZr2O12 garnet-based ceramic electrolyte. Journal of Power Sources, 230, 261-266.
[67] Geiger, C. A., Alekseev, E., Lazic, B., Fisch, M., Armbruster, T., Langner, R., . . . Weppner, W. (2011). Crystal chemistry and stability of “Li7La3Zr2O12” garnet: a fast lithium-ion conductor. Inorganic chemistry, 50(3), 1089-1097.
[68] Thompson, T., Sharafi, A., Johannes, M. D., Huq, A., Allen, J. L., Wolfenstine, J., & Sakamoto, J. (2015). A tale of two sites: on defining the carrier concentration in garnet‐based ionic conductors for advanced Li batteries. Advanced Energy Materials, 5(11), 1500096.
[69] Bernstein, N., Johannes, M., & Hoang, K. (2012). Origin of the structural phase transition in Li 7 La 3 Zr 2 O 12. Physical review letters, 109(20), 205702.
[70] Zhu, Y., He, X., & Mo, Y. (2016). First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. Journal of Materials Chemistry A, 4(9), 3253-3266.
[71] Qin, S., Zhu, X., Jiang, Y., Ling, M. e., Hu, Z., & Zhu, J. (2018). Growth of self-textured Ga3+-substituted Li7La3Zr2O12 ceramics by solid state reaction and their significant enhancement in ionic conductivity. Applied Physics Letters, 112(11), 113901.
[72] Richards, W. D., Miara, L. J., Wang, Y., Kim, J. C., & Ceder, G. (2016). Interface stability in solid-state batteries. Chemistry of Materials, 28(1), 266-273.
[73] Han, F., Zhu, Y., He, X., Mo, Y., & Wang, C. (2016). Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Advanced Energy Materials, 6(8), 1501590.
[74] Urban, A., Seo, D.-H., & Ceder, G. (2016). Computational understanding of Li-ion batteries. npj Computational Materials, 2(1), 1-13.
[75] Hautier, G., Ong, S. P., Jain, A., Moore, C. J., & Ceder, G. (2012). Accuracy of density functional theory in predicting formation energies of ternary oxides from
- 133 -
binary oxides and its implication on phase stability. Physical Review B, 85(15), 155208.
[76] Liu, Y.-L. (2020). Development of Li1.5Al0.5Ti1.5(PO4)3 and Poly (vinylidene fluoride)-hexafluoropropene/Poly (methyl methacrylate) Composite Electrolyte for Quasi-Solid-State Lithium Batteries.
[77] Thompson, T., Wolfenstine, J., Allen, J. L., Johannes, M., Huq, A., David, I. N., & Sakamoto, J. (2014). Tetragonal vs. cubic phase stability in Al–free Ta doped Li 7 La 3 Zr 2 O 12 (LLZO). Journal of Materials Chemistry A, 2(33), 13431-13436.
[78] Singh, V. K., & Singh, R. K. (2015). Development of ion conducting polymer gel electrolyte membranes based on polymer PVdF-HFP, BMIMTFSI ionic liquid and the Li-salt with improved electrical, thermal and structural properties. Journal of Materials Chemistry C, 3(28), 7305-7318.
[79] Ma, X., Yu, J., & Wang, N. (2006). Compatibility characterization of poly (lactic acid)/poly (propylene carbonate) blends. Journal of Polymer Science Part B: Polymer Physics, 44(1), 94-101. |