博碩士論文 108326024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.144.227.73
姓名 楊懿勤(Yi-Cin Yang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 奈米銀顆粒於缺氧環境的氧化宿命:有機硫醇及無機含氮物種之作用
(Probing oxidative dissolution of silver nanoparticles in the anoxic environment: Effects of thiols and inorganic nitrogen species)
相關論文
★ 埔心溪補助灌溉水水質與渠道底泥重金屬含量調查分析★ 桃園航空城三所國小周界大氣PAHs濃度探討
★ 無塵室揮發性有機氣體異味調查探討 -以某晶圓級封裝廠為例★ 利用土壤植栽與固相微萃取探討植作對非離子態有機污染物之吸收模式
★ 零價鐵與硫酸鹽的添加對於水田根圈環境汞 之生物有效性與菌相組成的影響★ 以紫外光/二氧化鈦光催化降解程序去除水溶液相內分泌干擾物質壬基苯酚之研究
★ 異化性鐵還原狀態下非生物性汞氧化還原 作用及其對地下水水質之影響★ 水溶液相中多壁奈米碳管分散懸浮與抑菌效果之相關性探討
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用-以北投垃圾焚化爐為例★ 以淨水污泥灰及廢玻璃為矽鋁源合成MCM-41並應用於重鉻酸鹽吸附之研究
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用 -以台中火力發電廠為例★ 細胞固定化影響厭氧氨氧化程序脫氮效能之研究
★ 藉由非抗性模式細菌對鎘之攝取機制探討量子點的生態毒性潛勢★ 利用生物性聚合物交聯所成穿透式網絡結構穩定污染土壤中之重金屬(鉛、鉻、鎘)
★ 蚯蚓處理加速堆肥廚餘去化可行性評估-以臺北市為例★ 氣相層析三段四極柱串聯質譜儀應用於多溴二苯醚環境樣品之分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 奈米銀顆粒(AgNPs)是消費產品中最常見的人造奈米材料之一,此類新興物質最終將不可避免地在生產、使用和棄置的過程中被釋放到環境。從環境的角度為出發點來看,AgNPs被釋放到環境後會受到像是氧分子、天然有機質、配位子等環境因子的影響,使其結構與表面特性發生變化,進而影響AgNPs的生物有效性。之前的研究已經證實AgNPs在有氧的狀態下才有顯著的微生物毒性作用,背後的原因主要是由於元素銀被分子氧氧化成銀離子,進入細胞的銀離子與帶有硫醇官能基的蛋白質/酵素結合、以及銀離子本身所引起的氧化壓力所致,但過去文獻對於其他環境因子在缺氧時是否也能造成奈米銀的氧化研究卻相對甚少探討。有鑒於AgNPs在厭氧環境中受無機氯離子與有機硫醇物質等配位基影響的轉化反應及生物可利用性等機制尚不清楚,本研究利用自行合成的檸檬酸所包覆的AgNPs,在缺氧環境下探討AgNPs與硫醇化合物的互動是否可產生Ag(I)外,也試著說明在脫硝程序中無機含氮物種是否同樣具有氧化AgNPs的能力,並藉由調整系統中氯離子濃度來說明AgNPs於淡水及海水環境下的穩定性。本實驗使用離心超濾以及0.02 μm膜過濾器將AgNPs分離後,以ICP-OES測量AgNPs所釋放溶解的Ag(I)。試驗的結果觀察到在黑暗缺氧環境中,有亞硝酸鹽存在的情況下,添加氯化物濃度越高AgNPs氧化所釋放的Ag(I)就越高,但硝酸鹽則不會顯著影響AgNPs的氧化行為。除此之外,有機硫醇配位基也會使AgNPs轉化成Ag(I),在越高的Ag/配位基莫耳比情況下,AgNPs的氧化程度也就越高。本研究更進一步調查腐植物質對AgNPs的影響,結果發現腐植物質如腐植酸及AQDS可顯著降低AgNPs轉化生成Ag(I)的濃度,說明腐植物質可能有助於減輕AgNPs毒性。本研究所得的這些成果預期將有助於評估及掌握AgNPs在生態環境的相關風險管理。
摘要(英) The production, use and disposal of silver nanoparticles (AgNPs) 3⁄4 one of the most common man-made nanoparticles in consumer products 3⁄4 will inevitably result in the
release of these novel materials into the environment. From an environmental point of view, the stability of AgNPs will subsequently be affected by certain environmental factors, such as molecular oxygen, natural organic matter (NOM), and complexing agents, thereby affecting the eventual bioavailability of AgNPs. Previous studies have demonstrated that AgNPs can exhibit significant bactericidal activity under aerobic conditions due to oxidative dissolution of AgNPs to Ag(I) by dissolved oxygen and then the uptake of Ag(I) by cells. The resulting intracellular Ag(I) will interfere with the functions of thiol-containing proteins, leading to the cells subject to oxidative stress. However, few studies have been conducted to investigate the conversion of AgNPs in the absence of dissolved oxygen, in particular the interactions between AgNPs and certain chemical species that are normally encountered in the anoxic environment. In this study, synthetic citrate-coated AgNPs were used to explore the effect of metabolic denitrifying species, chloride and NOM (using humic acid, HA, as the model species) on AgNP transformation under deoxygenated conditions. Ag(I) was separated from AgNPs by centrifugal ultrafiltration or 0.02 μm membrane filter and quantified by ICP- OES. Results show that increases in chloride alone was able to result in elevated Ag(I) production. Compared to nitrite that significantly oxidize AgNPs to Ag(I), nitrate had little effect on AgNP oxidation. Thiols could also convert AgNPs to Ag(I), and the higher the Ag/ligand molar ratio, the more Ag(I) formation. HA and AQDS (a quinone representative compound) were observed to reduce the extent of AgNPs transformed into Ag(I), implying that humic substances may help mitigate the toxicity of AgNPs to microbes. Results obtained in this study may help assess and manage the risk of AgNPs in the environment.
關鍵字(中) ★ 奈米銀顆粒
★ 硫醇
★ 氧化還原
★ 無機含氮物種
★ 氯離子
關鍵字(英) ★ silver nanoparticles
★ thiols
★ redox reactions
★ nitrogen species
★ chloride
論文目次 摘要 ...............................................................................................................................i Abstract.........................................................................................................................ii 誌謝 .............................................................................................................................iii 目錄 .............................................................................................................................iv 圖目錄 .........................................................................................................................vi 表目錄 .......................................................................................................................... x 第一章 前言................................................................................................................1
1.1 研究緣起 ......................................................................................................1
1.1.1 奈米材料的興起 ...................................................................................... 1
1.1.2 釋放到環境中的奈米銀 .......................................................................... 1
1.1.3 奈米銀在環境中的轉化宿命與毒性 ...................................................... 2
1.1.4 奈米銀在缺氧/厭氧狀態下的穩定性 ..................................................... 3
1.1.5 缺氧條件下無機含氮物種對金屬元素的氧化行為 .............................. 4
1.1.6 缺氧條件下有機硫醇對金屬元素的氧化行為 ...................................... 4
1.1.7 腐植物質對奈米銀氧化還原之影響 ...................................................... 5
1.2 研究目的 ......................................................................................................6 第二章 研究方法與材料............................................................................................7
2.1 實驗架構 ......................................................................................................7
2.2 實驗材料與藥品 ..........................................................................................8
2.3 奈米銀顆粒的合成及特徵分析 ..................................................................9
2.3.1 奈米銀合成方法 ...................................................................................... 9
2.3.2 奈米銀特徵分析 .................................................................................... 10
2.4 奈米銀與無機含氮物種互動試驗 ............................................................11
2.5 奈米銀與硫醇化合物互動試驗 ................................................................12
2.6 奈米銀與天然有機物互動試驗 ................................................................14
2.6.1 腐植酸(HA)儲備溶液製備 .................................................................... 16
2.6.2 還原和再氧化方法 ................................................................................ 16
2.7 銀離子添加實驗 ........................................................................................17
2.8 化學分析 ....................................................................................................18
2.8.1 總銀分析 ................................................................................................ 18
2.8.2 溶解銀濃度定量分析 ............................................................................ 18
2.9 化學物種組成模擬軟體 ............................................................................20
2.10 數據分析 ....................................................................................................20
第三章 結果與討論..................................................................................................22
3.1 奈米銀特徵分析 ........................................................................................22
3.2 奈米銀顆粒與銀離子分離方法之選擇及確認 ........................................26
3.3 奈米銀顆粒於脫硝條件下與無機含氮物種的直接互動 ........................28
3.3.1 低氯濃度(低鹽度)狀態.......................................................................... 29
3.3.2 中高氯濃度(中高鹽度)狀態.................................................................. 34
3.4 缺氧條件下有機物質對奈米銀穩定性的影響 ........................................46
3.4.1 硫醇類化合物 ........................................................................................ 46
3.4.2 腐植酸/醌基類化合物 ........................................................................... 56
3.5 AQDS 還原銀離子....................................................................................66
3.6 環境意義 ....................................................................................................70
第四章 結論與建議..................................................................................................72 參考文獻 .................................................................................................................... 73 附錄 ............................................................................................................................ 82
參考文獻 1. Peralta-Videa, J. R.; Zhao, L.; Lopez-Moreno, M. L.; de la Rosa, G.; Hong, J.; Gardea-Torresdey, J. L., Nanomaterials and the environment: a review for the biennium 2008-2010. J Hazard Mater 2011, 186, (1), 1-15.
2. Wu, Q.; Miao, W.-s.; Gao, H.-j.; Hui, D., Mechanical properties of nanomaterials: A review. Nanotechnol. Rev. 2020, 9, (1), 259-273.
3. Kolahalam, L. A.; Viswanath, I. K.; Diwakar, B. S.; Govindh, B.; Reddy, V.; Murthy, Y., Review on nanomaterials: Synthesis and applications. Mater. Today 2019, 18, 2182-2190.
4. Sharma, V. P.; Sharma, U.; Chattopadhyay, M.; Shukla, V., Advance applications of nanomaterials: a review. Mater. Today 2018, 5, (2), 6376-6380.
5. Roma, J.; Matos, A. R.; Vinagre, C.; Duarte, B., Engineered metal nanoparticles in the marine environment: A review of the effects on marine fauna. Mar Environ Res. 2020, 161, 105110.
6. Blaser, S. A.; Scheringer, M.; Macleod, M.; Hungerbuhler, K., Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ. 2008, 390, (2-3), 396-409.
7. Hedberg, J.; Blomberg, E.; Odnevall Wallinder, I., In the Search for Nanospecific Effects of Dissolution of Metallic Nanoparticles at Freshwater-Like Conditions: A Critical Review. Environ Sci Technol. 2019, 53, (8), 4030-4044.
8. Levard, C.; Hotze, E. M.; Lowry, G. V.; Brown, G. E., Jr., Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol. 2012, 46, (13), 6900-14.
9. Xu, Z.; Zhang, C.; Wang, X.; Liu, D., Release Strategies of Silver Ions from Materials for Bacterial Killing. ACS Appl. Bio Mater. 2021, 4, (5), 3985-3999.
10. McGee, C. F., The effects of silver nanoparticles on the microbial nitrogen cycle: a review of the known risks. Environ Sci Pollut Res Int. 2020, 27, (25), 31061-31073. 11. Anees Ahmad, S.; Sachi Das, S.; Khatoon, A.; Tahir Ansari, M.; Afzal, M.; Saquib Hasnain, M.; Kumar Nayak, A., Bactericidal activity of silver nanoparticles: A mechanistic review. Mater. Sci. Energy Technol. 2020, 3, 756-769.
12. McGillicuddy, E.; Murray, I.; Kavanagh, S.; Morrison, L.; Fogarty, A.; Cormican, M.; Dockery, P.; Prendergast, M.; Rowan, N.; Morris, D., Silver nanoparticles in the environment: Sources, detection and ecotoxicology. Sci Total Environ. 2017, 575, 231- 246.
13. Chevallet, M.; Veronesi, G.; Fuchs, A.; Mintz, E.; Michaud-Soret, I.; Deniaud, A., Impact of labile metal nanoparticles on cellular homeostasis. Current developments in imaging, synthesis and applications. Biophys. Acta, Gen. Subj. 2017, 1861, (6), 1566- 1577.
14. Reed, R. B.; Zaikova, T.; Barber, A.; Simonich, M.; Lankone, R.; Marco, M.; Hristovski, K.; Herckes, P.; Passantino, L.; Fairbrother, D. H.; Tanguay, R.; Ranville, J. F.; Hutchison, J. E.; Westerhoff, P. K., Potential Environmental Impacts and Antimicrobial Efficacy of Silver- and Nanosilver-Containing Textiles. Environ. Sci. Technol. 2016, 50, (7), 4018-26.
15. Westerhoff, T. M. B. a. P., Nanoparticle silver released into water from commercially available sock fabrics. Environ. Sci. Technol. 2008, 42, (11).
16. Massarsky, A.; Trudeau, V. L.; Moon, T. W., Predicting the environmental impact of nanosilver. Environ. Toxicol. Pharmacol. 2014, 38, (3), 861-73.
17. Gondikas, A. P.; Morris, A.; Reinsch, B. C.; Marinakos, S. M.; Lowry, G. V.; Hsu- Kim, H., Cysteine-induced modifications of zero-valent silver nanomaterials: implications for particle surface chemistry, aggregation, dissolution, and silver
speciation. Environ. Sci. Technol. 2012, 46, (13), 7037-45.
18. Dobias, J.; Bernier-Latmani, R., Silver release from silver nanoparticles in natural waters. Environ. Sci. Technol. 2013, 47, (9), 4140-4146.
19. Levard,C.;Mitra,S.;Yang,T.;Jew,A.D.;Badireddy,A.R.;Lowry,G.V.;Brown, G. E., Jr., Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli. Environ. Sci. Technol. 2013, 47, (11), 5738-45.
20. Chambers, B. A.; Afrooz, A. R.; Bae, S.; Aich, N.; Katz, L.; Saleh, N. B.; Kirisits, M. J., Effects of chloride and ionic strength on physical morphology, dissolution, and bacterial toxicity of silver nanoparticles. Environ. Sci. Technol. 2014, 48, (1), 761-9. 21. Zhang, C.; Hu, Z.; Deng, B., Silver nanoparticles in aquatic environments: Physiochemical behavior and antimicrobial mechanisms. Water Res 2016, 88, 403-427. 22. McShan, D.; Ray, P. C.; Yu, H., Molecular toxicity mechanism of nanosilver. J Food Drug Anal 2014, 22, (1), 116-127.
23. Peretyazhko, T. S.; Zhang, Q. B.; Colvin, V. L., Size-Controlled Dissolution of Silver Nanoparticles at Neutral and Acidic pH Conditions: Kinetics and Size Changes. Environ. Sci. Technol. 2014, 48, (20), 11954-11961.
24. Gorka,D.E.;Osterberg,J.S.;Gwin,C.A.;Colman,B.P.;Meyer,J.N.;Bernhardt, E. S.; Gunsch, C. K.; DiGulio, R. T.; Liu, J., Reducing Environmental Toxicity of Silver Nanoparticles through Shape Control. Environ. Sci. Technol. 2015, 49, (16), 10093-8.
25. El Badawy, A. M.; Silva, R. G.; Morris, B.; Scheckel, K. G.; Suidan, M. T.; Tolaymat, T. M., Surface charge-dependent toxicity of silver nanoparticles. Environ. Sci. Technol. 2011, 45, (1), 283-7.
26. Xiu, Z.-M.; Ma, J.; Alvarez, P. J., Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ. Sci. Technol. 2011, 45, (20), 9003-9008.
27. Li, W. R.; Xie, X. B.; Shi, Q. S.; Zeng, H. Y.; Ou-Yang, Y. S.; Chen, Y. B.,Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol. 2010, 85, (4), 1115-22.
28. Navarro, E.; Piccapietra, F.; Wagner, B.; Marconi, F.; Kaegi, R.; Odzak, N.; Sigg, L.; Behra, R., Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ. Sci. Technol. 2008, 42, (23), 8959-8964.
29. Stephanie C. Hamel, B. B., and Paul J. Lioy, Bioaccessibility of Metals in Soils for Different Liquid to Solid Ratios in Synthetic Gastric Fluid. Environ. Sci. Technol. 1998, 32, (3), 358–362.
30. Reinsch, B. C.; Levard, C.; Li, Z.; Ma, R.; Wise, A.; Gregory, K. B.; Brown, G. E., Jr.; Lowry, G. V., Sulfidation of silver nanoparticles decreases Escherichia coli growth inhibition. Environ. Sci. Technol. 2012, 46, (13), 6992-7000.
31. Levard, C.; Hotze, E. M.; Colman, B. P.; Dale, A. L.; Truong, L.; Yang, X. Y.; Bone, A. J.; Brown, G. E., Jr.; Tanguay, R. L.; Di Giulio, R. T.; Bernhardt, E. S.; Meyer, J. N.; Wiesner, M. R.; Lowry, G. V., Sulfidation of silver nanoparticles: natural antidote to their toxicity. Environ. Sci. Technol. 2013, 47, (23), 13440-8.
32. Kim, B.; Park, C.-S.; Murayama, M.; Hochella Jr, M. F., Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environ. Sci. Technol. 2010, 44, (19), 7509-7514.
33. Levard, C.; Reinsch, B. C.; Michel, F. M.; Oumahi, C.; Lowry, G. V.; Brown Jr, G. E., Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate. Environ. Sci. Technol. 2011, 45, (12), 5260-5266.
34. Morel, F. M.; Hering, J. G., Principles and applications of aquatic chemistry. John Wiley & Sons: 1993.
35. Amyot, M.; Morel, F. M.; Ariya, P. A., Dark oxidation of dissolved and liquid elemental mercury in aquatic environments. Environ. Sci. Technol. 2005, 39, (1), 110- 114.
36. Amyot, M.; Gill, G. A.; Morel, F. M., Production and loss of dissolved gaseous mercury in coastal seawater. Environ. Sci. Technol. 1997, 31, (12), 3606-3611.
37. Cohen-Atiya, M.; Mandler, D., Studying thiol adsorption on Au, Ag and Hg surfaces by potentiometric measurements. J. Electroanal. Chem. 2003, 550-551, 267- 276.
38. Yamamoto, M., Stimulation of elemental mercury oxidation in the presence of chloride ion in aquatic environments. Chemosphere 1996, 32, (6), 1217-1224.
39. Zheng, W.; Lin, H.; Mann, B. F.; Liang, L.; Gu, B., Oxidation of dissolved elemental mercury by thiol compounds under anoxic conditions. Environ. Sci. Technol. 2013, 47, (22), 12827-34.
40. Zheng, W.; Liang, L.; Gu, B., Mercury reduction and oxidation by reduced natural organic matter in anoxic environments. Environ. Sci. Technol. 2012, 46, (1), 292-9. 41. Aiken, G. R.; Hsu-Kim, H.; Ryan, J. N., Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids. Environ. Sci. Technol. 2011, 45, (8), 3196-201.
42. Zhang, H.; Zheng, Y.; Wang, X. C.; Wang, Y.; Dzakpasu, M., Characterization and biogeochemical implications of dissolved organic matter in aquatic environments. J. Environ. Manage. 2021, 294, 113041.
43. Fernando, I.; Zhou, Y., Concentration dependent effect of humic acid on the transformations of silver nanoparticles. J. Mol. Liq 2019, 284, 291-299.
44. Coates, J. D.; Chakraborty, R.; O’Connor, S. M.; Schmidt, C.; Thieme, J., The geochemical effects of microbial humic substances reduction. Acta Hydrochim. Hydrobiol. 2001, 28, (7), 420-427.
45. Tiwari, V. S.; Oleg, T.; Darbha, G. K.; Hardy, W.; Singh, J. P.; Ray, P. C., Non- resonance SERS effects of silver colloids with different shapes. Chem. Phys. Lett. 2007, 446, (1-3), 77-82.
46. Deng, H.; McShan, D.; Zhang, Y.; Sinha, S. S.; Arslan, Z.; Ray, P. C.; Yu, H., Mechanistic Study of the Synergistic Antibacterial Activity of Combined Silver Nanoparticles and Common Antibiotics. Environ. Sci. Technol. 2016, 50, (16), 8840- 8.
47. Kappler, A.; Benz, M.; Schink, B.; Brune, A., Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment. FEMS Microbiol. Ecol. 2004, 47, (1), 85-92.
48. Peretyazhko, T.; Sposito, G., Reducing capacity of terrestrial humic acids. Geoderma 2006, 137, (1-2), 140-146.
49. Garg, S.; Rong, H.; Miller, C. J.; Waite, T. D., Oxidative Dissolution of Silver Nanoparticles by Chlorine: Implications to Silver Nanoparticle Fate and Toxicity. Environ. Sci. Technol. 2016, 50, (7), 3890-6.
50. Rong, H.; Garg, S.; Waite, T. D., Transformation of AgCl particles under conditions typical of natural waters: implications for oxidant generation. Environ. Sci. Technol. 2018, 52, (20), 11621-11631.
51. Yang, X.; Gondikas, A. P.; Marinakos, S. M.; Auffan, M.; Liu, J.; Hsu-Kim, H.; Meyer, J. N., Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ. Sci. Technol. 2012, 46, (2), 1119-27.
52. Benn, T. M.; Westerhoff, P., Nanoparticle silver released into water from commercially available sock fabrics. Environ. Sci. Technol. 2008, 42, (11), 4133-4139. 53. Rong, H.; Garg, S.; Waite, T. D., Impact of light and Suwanee River Fulvic Acid on O2 and H2O2 Mediated Oxidation of Silver Nanoparticles in Simulated Natural Waters. Environ. Sci. Technol. 2019, 53, (12), 6688-6698.
54. Rajendran, R. K.; Lin, C. C., Stability and Microbial Toxicity of Silver
Nanoparticles under Denitrifying Conditions. ACS Appl. Mater. Interfaces 2021, 13,(39), 46233-46246.
55. Liu, J.-f.; Yu, S.-j.; Yin, Y.-g.; Chao, J.-b., Methods for separation, identification, characterization and quantification of silver nanoparticles. Trac-trend Anal Chem 2012, 33, 95-106.
56. Wherry, S. A.; Tesoriero, A. J.; Terziotti, S., Factors Affecting Nitrate Concentrations in Stream Base Flow. Environ. Sci. Technol. 2021, 55, (2), 902-911. 57. Gao, J.; Wang, S.; Li, Z.; Wang, L.; Chen, Z.; Zhou, J., High Nitrate Accumulation in the Vadose Zone after Land-Use Change from Croplands to Orchards. Environ. Sci. Technol. 2021, 55, (9), 5782-5790.
58. Liu, S.; Wang, C.; Hou, J.; Wang, P.; Miao, L.; Fan, X.; You, G.; Xu, Y., Effects of Ag and Ag2S nanoparticles on denitrification in sediments. Water Res. 2018, 137, 28-36.
59. Zheng, X.; Wang, J.; Chen, Y.; Wei, Y., Comprehensive analysis of transcriptional and proteomic profiling reveals silver nanoparticles-induced toxicity to bacterial denitrification. J. Hazard. Mater. 2018, 344, 291-298.
60. Wu, L.; Zhu, G.; Zhang, X.; Si, Y., Silver nanoparticles inhibit denitrification by altering the viability and metabolic activity of Pseudomonas stutzeri. Sci Total Environ 2020, 706, 135711.
61. Lowry, G. V.; Espinasse, B. P.; Badireddy, A. R.; Richardson, C. J.; Reinsch, B. C.; Bryant, L. D.; Bone, A. J.; Deonarine, A.; Chae, S.; Therezien, M.; Colman, B. P.; Hsu-Kim, H.; Bernhardt, E. S.; Matson, C. W.; Wiesner, M. R., Long-term transformation and fate of manufactured ag nanoparticles in a simulated large scale freshwater emergent wetland. Environ. Sci. Technol. 2012, 46, (13), 7027-36.
62. Lowry, G. V.; Gregory, K. B.; Apte, S. C.; Lead, J. R., Transformations of nanomaterials in the environment. Environ. Sci. Technol. 2012, 46, (13), 6893-9.
63. Levard, C.; Reinsch, B. C.; Michel, F. M.; Oumahi, C.; Lowry, G. V.; Brown, GE., Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate. Environ. Sci. Technol. 2011, 45, (12), 5260-6.
64. Liu, J.; Hurt, R. H., Ion release kinetics and particle persistence in aqueous nano- silver colloids. Environ. Sci. Technol. 2010, 44, (6), 2169-2175.
65. Parkhurst, D. L.; Appelo, C., User′s guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water-resources investigations report 1999, 99, (4259), 312. 66. Rong, H.; Garg, S.; Waite, T. D., Impact of light and Suwanee River Fulvic Acid on O2 and H2O2 mediated oxidation of silver nanoparticles in simulated natural waters. Environ. Sci. Technol. 2019, 53, (12), 6688-6698.
67. Gunsolus, I. L.; Mousavi, M. P.; Hussein, K.; Bühlmann, P.; Haynes, C. L., Effects of humic and fulvic acids on silver nanoparticle stability, dissolution, and toxicity. Environ. Sci. Technol. 2015, 49, (13), 8078-8086.
68. Yang, X.; Jiang, C.; Hsu-Kim, H.; Badireddy, A. R.; Dykstra, M.; Wiesner, M.; Hinton, D. E.; Meyer, J. N., Silver nanoparticle behavior, uptake, and toxicity in Caenorhabditis elegans: effects of natural organic matter. Environ. Sci. Technol. 2014, 48, (6), 3486-95.
69. Le Ouay, B.; Stellacci, F., Antibacterial activity of silver nanoparticles: a surface science insight. Nano today 2015, 10, (3), 339-354.
70. Alvarez, P. J.; Colvin, V.; Lead, J.; Stone, V., Research priorities to advance eco- responsible nanotechnology. In ACS Publications: 2009.
71. Klüpfel, L.; Piepenbrock, A.; Kappler, A.; Sander, M., Humic substances as fully regenerable electron acceptors in recurrently anoxic environments. Nat. Geosci. 2014, 7, (3), 195-200.
72. Durelle T. Scott, D. M. M., Elizabeth L. Blunt-Harris, Sarah E. Kolesar, and
Derek R. Lovley, Quinone Moieties Act as Electron Acceptors in the Reduction ofHumic Substances by Humics-Reducing Microorganisms. Environ. Sci. Technol. 1998, 32, (19), 2984-2989.
73. Maurer, F.; Christl, I.; Hoffmann, M.; Kretzschmar, R., Reduction and reoxidation of humic acid: influence on speciation of cadmium and silver. Environ. Sci. Technol. 2012, 46, (16), 8808-16.
74. Mandler, D.; Kraus-Ophir, S., Self-assembled monolayers (SAMs) for electrochemical sensing. Journal of Solid State Electrochemistry 2011, 15, (7-8), 1535. 75. Feng Dong, C. W., Ai-Jun Miao and Ke Pan Reduction of silver ions to form silver nanoparticles by redox-active organic molecules: coupled impact of the redox state and environmental factors. Environ. Sci. Nano 2020, 8, 269-281.
76. Bobyk, L.; Tarantini, A.; Beal, D.; Veronesi, G.; Kieffer, I.; Motellier, S.; Valsami- Jones, E.; Lynch, I.; Jouneau, P.-H.; Pernet-Gallay, K.; Aude-Garcia, C.; Sauvaigo, S.; Douki, T.; Rabilloud, T.; Carriere, M., Toxicity and chemical transformation of silver nanoparticles in A549 lung cells: dose-rate-dependent genotoxic impact. Environ. Sci. Nano 2021, 8, (3), 806-821.
77. Leung, B. O.; Jalilehvand, F.; Mah, V.; Parvez, M.; Wu, Q., Silver(I) complex formation with cysteine, penicillamine, and glutathione. Inorg. Chem. 2013, 52, (8), 4593-602.
78. Rong, H.; Garg, S.; Waite, T. D., Transformation of AgCl Particles under Conditions Typical of Natural Waters: Implications for Oxidant Generation. Environ. Sci. Technol. 2018, 52, (20), 11621-11631.
指導教授 林居慶(Chu-Ching Lin) 審核日期 2022-1-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明