參考文獻 |
Andrady, A.L., Microplastics in the marine environment. Marine pollution bulletin, 2011. 62(8): p. 1596-1605.
2. Hidalgo-Ruz, V., et al., Microplastics in the marine environment: a review of the methods used for identification and quantification. Environmental science & technology, 2012. 46(6): p. 3060-3075.
3. Ryan, P.G., The incidence and characteristics of plastic particles ingested by seabirds. Marine environmental research, 1987. 23(3): p. 175-206.
4. report, B.R., Global markets and technologies for bioplastics. 2021.
5. Holten, C.H., Lactic acid. Properties and chemistry of lactic acid and derivatives.
1971: Weinheim/Bergstr., W. Germany, Verlag Chemie GmbH.
6. Lowe, C.E., Preparation of high molecular weight polyhydroxyacetic ester. 1954,
Google Patents.
7. Williams, D., Biodegradation of surgical polymers. Journal of Materials Science,
1982. 17(5): p. 1233-1246.
8. Lunt, J., Large-scale production, properties and commercial applications of polylactic
acid polymers. Polymer degradation and stability, 1998. 59(1-3): p. 145-152.
9. Kulkarni, R., et al., Polylactic acid for surgical implants. Archives of surgery, 1966.
93(5): p. 839-843.
10. Li, S. and M. Vert, Biodegradation of aliphatic polyesters, in Degradable polymers.
2002, Springer. p. 71-131.
11. Drumright, R.E., P.R. Gruber, and D.E. Henton, Polylactic acid technology. Advanced
materials, 2000. 12(23): p. 1841-1846.
12. Itävaara, M., S. Karjomaa, and J.-F. Selin, Biodegradation of polylactide in aerobic
and anaerobic thermophilic conditions. Chemosphere, 2002. 46(6): p. 879-885.
13. Vink, E.T., et al., The sustainability of NatureWorksTM polylactide polymers and
IngeoTM polylactide fibers: an update of the future. Macromolecular Bioscience, 2004.
4(6): p. 551-564.
14. Vink, E.T., et al., Applications of life cycle assessment to NatureWorksTM polylactide
(PLA) production. Polymer Degradation and stability, 2003. 80(3): p. 403-419.
15. Kale, G., R. Auras, and S.P. Singh, Comparison of the degradability of poly (lactide)
packages in composting and ambient exposure conditions. Packaging Technology and
Science: An International Journal, 2007. 20(1): p. 49-70.
16. Size, L.L.M., Share & Trends Analysis Report by End-Use (Residential, Commercial),
by Product (Lamps, Luminaires), by Application (Indoor, Outdoor), by Region, and
Segment Forecasts, 2021–2028. Fortune Business Insights: Maharashtra, India, 2021.
17. Hamad, K., et al., Properties and medical applications of polylactic acid: A review.
66
Express Polymer Letters, 2015. 9(5).
18. BIOPLASTICS MARKET DEVELOPMENT UPDATE 2020. 2020.
19. 黃淑娟, PLA 再生酯粒開發與射出產品試製計畫. 2017.
20. Bajpai, P.K., I. Singh, and J. Madaan, Development and characterization of PLA-
based green composites: A review. Journal of Thermoplastic Composite Materials,
2014. 27(1): p. 52-81.
21. Ebnesajjad, S., Handbook of biopolymers and biodegradable plastics: properties,
processing and applications. 2012: William Andrew.
22. Ho, K.-L.G., et al., Degradation of polylactic acid (PLA) plastic in Costa Rican soil
and Iowa state university compost rows. Journal of environmental polymer
degradation, 1999. 7(4): p. 173-177.
23. Lim, L.-T., R. Auras, and M. Rubino, Processing technologies for poly (lactic acid).
Progress in polymer science, 2008. 33(8): p. 820-852.
24. Henton, D.E., et al., Polylactic acid technology. Natural fibers, biopolymers, and
biocomposites, 2005. 16: p. 527-577.
25. Vert, M., J. Mauduit, and S. Li, Biodegradation of PLA/GA polymers: increasing
complexity. Biomaterials, 1994. 15(15): p. 1209-1213.
26. Tsuji, H. and K. Ikarashi, In vitro hydrolysis of poly (l-lactide) crystalline residues as
extended-chain crystallites. Part I: long-term hydrolysis in phosphate-buffered
solution at 37 C. Biomaterials, 2004. 25(24): p. 5449-5455.
27. Oksman, K., M. Skrifvars, and J.-F. Selin, Natural fibres as reinforcement in
polylactic acid (PLA) composites. Composites science and technology, 2003. 63(9): p.
1317-1324.
28. Lee, J.T., et al., Mechanical properties of denim fabric reinforced poly (lactic acid).
Fibers and Polymers, 2010. 11(1): p. 60-66.
29. Hu, R. and J.-K. Lim, Fabrication and mechanical properties of completely
biodegradable hemp fiber reinforced polylactic acid composites. Journal of Composite
Materials, 2007. 41(13): p. 1655-1669.
30. Srebrenkoska, V., Obtaining and characterization of polymer eco-composites:
comparison with conventional and the possibility of reusing. 2009, Faculty og
Technology and Metallurgy, University St Cyril and Methodius ....
31. Petinakis, E., et al., Effect of matrix–particle interfacial adhesion on the mechanical
properties of poly (lactic acid)/wood-flour micro-composites. Journal of Polymers and
the Environment, 2009. 17(2): p. 83-94.
32. Plackett, D., et al., Biodegradable composites based on L-polylactide and jute fibres.
Composites science and technology, 2003. 63(9): p. 1287-1296.
33. Tao, Y., L. Yan, and R. Jie, Preparation and properties of short natural fiber
reinforced poly (lactic acid) composites. Transactions of Nonferrous Metals Society of China, 2009. 19: p. s651-s655.
34. Tokiwa, Y. and B.P. Calabia, Biodegradability and biodegradation of poly (lactide). Applied microbiology and biotechnology, 2006. 72(2): p. 244-251.
35. Tsuji, H. and S. Miyauchi, Poly (L-lactide): VI Effects of crystallinity on enzymatic hydrolysis of poly (L-lactide) without free amorphous region. Polymer degradation and stability, 2001. 71(3): p. 415-424.
36. MacDonald, R.T., S.P. McCarthy, and R.A. Gross, Enzymatic degradability of poly (lactide): effects of chain stereochemistry and material crystallinity. Macromolecules, 1996. 29(23): p. 7356-7361.
37. Nampoothiri, K.M., N.R. Nair, and R.P. John, An overview of the recent developments in polylactide (PLA) research. Bioresource technology, 2010. 101(22): p. 8493-8501.
38. Höglund, A., K. Odelius, and A.-C. Albertsson, Crucial differences in the hydrolytic degradation between industrial polylactide and laboratory-scale poly (L-lactide). ACS applied materials & interfaces, 2012. 4(5): p. 2788-2793.
39. Bergsma, J.E., et al., Late degradation tissue response to poly (L-lactide) bone plates and screws. Biomaterials, 1995. 16(1): p. 25-31.
40. Li, S. and M. Vert, Biodegradation of aliphatic polyesters, in" Degradable Polymers: Principles and Applications",(G. Scott and D. Gilead Eds.). 1995, Chapman & Hall, London.
41. Karamanlioglu, M. and G.D. Robson, The influence of biotic and abiotic factors on the rate of degradation of poly (lactic) acid (PLA) coupons buried in compost and soil. Polymer degradation and stability, 2013. 98(10): p. 2063-2071.
42. Tsuji, H. and K. Suzuyoshi, Environmental degradation of biodegradable polyesters 1. Poly (ε-caprolactone), poly [(R)-3-hydroxybutyrate], and poly (L-lactide) films in controlled static seawater. Polymer Degradation and Stability, 2002. 75(2): p. 347- 355.
43. Tsuji, H. and K. Suzuyoshi, Environmental degradation of biodegradable polyesters 2. Poly (ε-caprolactone), poly [(R)-3-hydroxybutyrate], and poly (L-lactide) films in natural dynamic seawater. Polymer degradation and stability, 2002. 75(2): p. 357-365.
44. Le Duigou, A., P. Davies, and C. Baley, Seawater ageing of flax/poly (lactic acid) biocomposites. Polymer Degradation and Stability, 2009. 94(7): p. 1151-1162.
45. Ho, K.-L.G. and A.L. Pometto III, Effects of electron-beam irradiation and ultraviolet light (365 nm) on polylactic acid plastic films. Journal of environmental polymer degradation, 1999. 7(2): p. 93-100.
46. Copinet, A., et al., Effects of ultraviolet light (315 nm), temperature and relative humidity on the degradation of polylactic acid plastic films. Chemosphere, 2004. 55(5): p. 763-773.
47. Jeon, H.J. and M.N. Kim, Biodegradation of poly (L-lactide)(PLA) exposed to UV irradiation by a mesophilic bacterium. International Biodeterioration & Biodegradation, 2013. 85: p. 289-293.
48. Pranamuda, H., Y. Tokiwa, and H. Tanaka, Polylactide degradation by an Amycolatopsis sp. Applied and environmental microbiology, 1997. 63(4): p. 1637- 1640.
49. Sangwan, P. and D.Y. Wu, New insights into polylactide biodegradation from molecular ecological techniques. Macromolecular bioscience, 2008. 8(4): p. 304-315.
50. Epstein, E., The science of composting. 2017: CRC press.
51. Kolstad, J.J., et al., Assessment of anaerobic degradation of IngeoTM polylactides
under accelerated landfill conditions. Polymer Degradation and Stability, 2012. 97(7):
p. 1131-1141.
52. Bharadwaj, K., Improvements in microbial compost technology: a special reference to
microbiology of composting. Wealth from waste. Tata Energy Research Institute, New
Delhi, 1995: p. 115-135.
53. Cooperband, L.R., Composting: art and science of organic waste conversion to a
valuable soil resource. Laboratory medicine, 2000. 31(5): p. 283-290.
54. Sedničková, M., et al., Changes of physical properties of PLA-based blends during
early stage of biodegradation in compost. International journal of biological
macromolecules, 2018. 113: p. 434-442.
55. Ohkita, T. and S.H. Lee, Thermal degradation and biodegradability of poly (lactic
acid)/corn starch biocomposites. Journal of applied polymer science, 2006. 100(4): p.
3009-3017.
56. Kamiya, M., S. Asakawa, and M. Kimura, Molecular analysis of fungal communities
of biodegradable plastics in two Japanese soils. Soil science and plant nutrition, 2007.
53(5): p. 568-574.
57. Urayama, H., T. Kanamori, and Y. Kimura, Properties and biodegradability of
polymer blends of poly (l‐lactide) s with different optical purity of the lactate units.
Macromolecular materials and engineering, 2002. 287(2): p. 116-121.
58. Calmon, A., et al., Evaluation of material biodegradability in real conditions–
development of a burial test and an analysis methodology based on numerical vision.
Journal of environmental polymer degradation, 1999. 7(3): p. 157-166.
59. Karamanlioglu, M., R. Preziosi, and G.D. Robson, Abiotic and biotic environmental
degradation of the bioplastic polymer poly (lactic acid): a review. Polymer
Degradation and stability, 2017. 137: p. 122-130.
60. Morales, J., et al., Degradation of carbofuran and carbofuran-derivatives in presence
of humic substances under basic conditions. Chemosphere, 2012. 89(11): p. 1267-
1271.
61. Moura, M.N., M.J. Martín, and F.J. Burguillo, A comparative study of the adsorption
of humic acid, fulvic acid and phenol onto Bacillus subtilis and activated sludge.
Journal of Hazardous Materials, 2007. 149(1): p. 42-48.
62. Güngör, E.B.Ö. and M. Bekbölet, Zinc release by humic and fulvic acid as influencedby pH, complexation and DOC sorption. Geoderma, 2010. 159(1-2): p. 131-138.
63. Zhao, L., et al., Adsorption of humic acid from aqueous solution onto irradiation-
crosslinked carboxymethylchitosan. Bioresource technology, 2008. 99(6): p. 1911-
1917.
64. Spark, K., J. Wells, and B. Johnson, The interaction of a humic acid with heavy
metals. Soil Research, 1997. 35(1): p. 89-102.
65. Pinheiro, J., A. Mota, and M.S. Gonçalves, Complexation study of humic acids with
cadmium (II) and lead (II). Analytica chimica acta, 1994. 284(3): p. 525-537.
66. Kinniburgh, D.G., et al., Metal ion binding by humic acid: application of the NICA-
Donnan model. Environmental Science & Technology, 1996. 30(5): p. 1687-1698.
67. Bowen, H.J., The handbook of environmental chemistry. 1, The natural environment
and the biogeochemical cycles: D. 1985: Springer.
68. Beavington, F., Contamination of soil with zinc, copper, lead, and cadmium in the
Wollongong city area. Soil Research, 1973. 11(1): p. 27-31.
69. Lopez, J.M. and G.F. Lee, Environmental chemistry of copper in Torch Lake,
Michigan. Water, Air, and Soil Pollution, 1977. 8(4): p. 373-385.
70. Forstner, U. and G.T. Wittmann, Metal pollution in the aquatic environment. 1979:
Springer-Verlag.
71. Barkay, T., S.C. Tripp, and B.H. Olson, Effect of metal-rich sewage sludge application
on the bacterial communities of grasslands. Applied and Environmental Microbiology,
1985. 49(2): p. 333-337.
72. Mackenthun, K.M. and H.L. Cooley, The biological effect of copper sulphate
treatment on lake ecology. Transactions of the Wisconsin Academy of Sciences, Arts
and Letters, 1952. 41: p. 177-187.
73. Elder, J.F. and A.J. Horne, Copper cycles and CuSO 4 algicidal capacity in two
California lakes. Environmental management, 1978. 2(1): p. 17-30.
74. Hodson, P., U. Borgman, and H. Shear, Toxicity of copper to aquatic biota. Pages
307–372in JO Nriagu (ed.), Copper in the environment. II. Health effects. 1979, John
Wiley & Sons, New York.
75. Baham, J. and G. Sposito, Proton and Metal Complexation by Water‐soluble Ligands
Extracted from Anaerobically Digested Sewage Sludge. 1986, Wiley Online Library.
76. Stiff, M., The chemical states of copper in polluted fresh water and a scheme of
analysis to differentiate them. Water Research, 1971. 5(8): p. 585-599.
77. Boutron, C.F. and C.C. Patterson, The occurrence of lead in Antarctic recent snow, firn
deposited over the last two centuries and prehistoric ice. Geochimica et
Cosmochimica Acta, 1983. 47(8): p. 1355-1368.
78. Badger, M.J.R.T.M. and S.J.S.P.K. Roberson, Endocrine mechanisms underlying the
growth effects of developmental lead exposure in the rat. Journal of Toxicology and Environmental Health Part A, 1998. 54(2): p. 101-120.
79. Gorrasi, G. and R. Pantani, Effect of PLA grades and morphologies on hydrolytic degradation at composting temperature: Assessment of structural modification and kinetic parameters. Polymer degradation and stability, 2013. 98(5): p. 1006-1014. |