博碩士論文 108356004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:150 、訪客IP:3.137.198.39
姓名 陳信予(Shin -Yu Chen)  查詢紙本館藏   畢業系所 環境工程研究所在職專班
論文名稱 針鐵礦之 Fenton-like 反應處理含亮藍 FCF 廢水
(Fenton-like Reaction Treatment of Wastewater Containing Brilliant Blue FCF Using goethite)
相關論文
★ 偏光板TAC製程節水研究★ 應用碳足跡盤查於節能減碳策略之研究-以某太陽能多晶矽片製造廠為例
★ 不同形態擔體對流動式接觸床 (MBBR)去除氨氮效率之探討★ 以減壓蒸發法回收光阻廢液之可行性探討-以某化學材料製造廠為例
★ 行為安全執行策略探討-以某紡絲事業單位為例★ 以環保溶劑取代甲苯應用於工業用接著劑可行性之研究
★ AO+MBR+RO進行生活污水廠水再生最佳調配比例之研究-以鳳山溪污水處理廠為例★ 二氧化矽與氧化鋁廢水混合混凝處理之研究
★ 利用碳氣凝膠紙電吸附於二氯化銅水溶液現象之探討★ 非接觸式光學監測混凝系統技術之發展
★ 以光學影像連續監測銅廢水化學沉降之技術發展★ 以膠羽影像光訊號分析(FICA)技術監測高嶺土之化學混凝
★ 膠羽影像色譜分析技術 監測混凝程序之開發‒以地表原水為例★ 石門水庫分層取水對於前加氯與混凝成效之影響
★ 石門水庫分層取水對於平鎮淨水廠快濾池堵塞成因分析★ 地表水中氨氮之生物急毒性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 人工食用色素為化學合成的色素,對不同的土壤有不同的影響。容易被酸性土壤吸收,由於其分子大且有離子鍵。因此土壤成分也會影響其吸附水平。從文獻指出人工食用色素會對人體造成傷害,如生育力下降、畸形胎,甚至可能會致癌。從過去相關的文獻,顯示出土壤中天然鐵氧礦物催化Fenton-like氧化法能處理眾多溶解相和非溶解相之污染物。因此本研究利用針鐵礦去模擬天然鐵氧礦物去催化過氧化物,來進行Fenton-like反應來去除人工食用色素此類污染物。並藉由調整不同的參數如:pH值、針鐵礦的含量和H2O2濃度與加入次數。故選用亮藍FCF,利用此系統進行,來探討對此污染物的去除的變化特性。
從結果顯示,當增加H2O2濃度,對於針鐵礦催化Fenton-like反應之能力,不是有很明顯的提升;但增加H2O2加入次數,會去趨緩Fe2+、Fe3+和HO‧自身的競爭作用,來維持H2O2一定的濃度,反而對於提高Fenton-like反應之能力是非常有效的;對於不同pH值上,在酸性的狀況時,針鐵礦可以解離出更多的鐵離子,與H2O2反應,並產生更多的HO‧,因此可以很明顯發現在pH=3時,對於催化Fenton-like反應之能力有非常大的提升;在針鐵礦含量多寡上,當針鐵礦含量越多,能分解出的鐵離子也越多,並且也會有更多針鐵礦的表面可以與H2O2反應,兩者皆可大幅提高Fenton-like反應之能力。若在使用合成針鐵礦來催化Fenton-like反應,去除人工食用色素此類污染物,可以參考本研究中參數相關設定,以有效評估並且預測人工食用色素相關污染物之可行性和效率。
摘要(英) Artificial food colorants are chemically synthesized pigments that exhibit varying impacts on different types of soil. They are readily absorbed by acidic soils due to their large molecular size and ionic bonds. Consequently, soil composition also influences their adsorption levels. Literature has indicated the harmful effects of artificial food colorants on human health, including decreased fertility, malformed fetuses, and a potential carcinogenic impact. Previous studies have demonstrated the capability of natural iron oxide minerals in soil to catalyze Fenton-like oxidation, effectively treating various dissolved and non-dissolved pollutants. Hence, this research employs goethite to simulate natural iron oxide minerals in catalyzing peroxide to conduct Fenton-like reactions for removing pollutants such as artificial food colorants. By adjusting different parameters such as pH levels, goethite content, H2O2 concentration, and frequency of addition, this study focuses on using FD&C Blue No. 1 food colorant to explore the variations in its removal characteristics through this system.
Based on the results obtained, it was observed that increasing the concentration of H2O2 did not significantly enhance the ability of goethite to catalyze the Fenton-like reaction. However, increasing the frequency of H2O2 addition tended to mitigate the competitive interactions among Fe2+, Fe3+, and HO‧, thus maintaining a certain concentration of H2O2. This, in turn, proved to be highly effective in enhancing the capability of the Fenton-like reaction. Moreover, concerning different pH values, under acidic conditions, goethite demonstrated the ability to dissociate more iron ions, react with H2O2, and generate more HO‧. Therefore, it was notably evident that at pH=3, there was a substantial increase in the ability to catalyze the Fenton-like reaction. Regarding the quantity of goethite, higher content led to the release of a greater amount of iron ions available for reaction and provided more surface area for goethite-H2O2 interactions, both significantly enhancing the capability of the Fenton-like reaction. Hence, when utilizing synthetic goethite for catalyzing the Fenton-like reaction in removing artificial food colorant pollutants, referencing the parameter settings in this study can effectively evaluate and predict the feasibility and efficiency of eliminating pollutants associated with artificial food colorants.
關鍵字(中) ★ 人工食用色素
★ 亮藍FCF
★ 天然鐵氧礦物
★ Fenton-like反應
關鍵字(英) ★ Artificial food colorants
★ FD&C Blue No. 1
★ Natural iron oxide minerals
★ Fenton-like reaction
論文目次 目錄
摘要 I
Abstrace III
誌謝 V
目錄 VII
圖目錄 IX
表目錄 X
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的與範疇 2
第二章 文獻回顧 3
2.1 Fenton 化學氧化法 3
2.2 Fenton-like化學氧化法的反應機制 6
2.3. Fenton-like化學氧化法的影響因子 9
第三章 研究方法與材料 21
3.1 研究方法 21
3.2 研究流程 22
3.3實驗試藥試劑 22
3.4實驗設備 23
3.5 降解亮藍FCF處理方式 23
3.6 水樣分析 24
第四章 結果與討論 26
4.1 COD值分析 26
4.2 H2O2添加濃度對亮藍FCF污染物的影響 30
4.3 pH值對亮藍FCF污染物的影響 33
4.4 針鐵礦含量對亮藍FCF污染物的影響 36
4.5 H2O2添加次數對亮藍FCF污染物的影響 39
第五章 結論與建議 42
5.1 結論 42
5.2 建議 43
參考文獻 44
參考文獻 參考文獻
李思亮 (2006) 台灣南部地區之土壤環境因子對天然鐵氧礦物催化Fenton-like氧化效率之影響。屏東科技大學環境工程與科學系,屏東,碩士論文。

高思懷、潘鐘、張芳淑(1994)Fenton 處理垃圾滲出水過程中過氧化氫與 COD 之分解動力。第十九屆廢水處理技術研討會論文集,桃園,第22-29頁。

國民健康署 (2018 年 11月 24 日)。什麼是第 3 級致癌物?
https://www.facebook.com/hpagov/posts/2380804055281686/

張秋萍、盧明俊、陳重男 (1993) Fenton 技術在有害廢棄物處理上之應用。工業污染防治,7(46):第107-122頁。

陳世哲(1998)以水化後針鐵礦催化過氧化氫分解 2-氯酚。國立交通大學環境工程研究所,新竹,碩士論文。

陳韋舜 (2003) Fenton-like 反應中含氯乙烯類污染物與氫氧自由基反應係數之探討。屏東科技大學環境工程與科學系,屏東,碩士論文。

楊金鐘、賴文煌、龍玉文 (1997) 利用 Fenton 法處理受 4-氯酚污染土壤之探討。第十二屆廢棄物處理技術研討會論文集,台北,第329-334頁。

葉桂君、高羽安、李尚璋、林麗卿 (1998) Fenton 氧化法中土壤吸附氯酚特性變化之探討。第十三屆廢水處理技術研討會論文集,高雄,第181-188頁。

葉桂君、許啟裕、陳庭堅、黃國林(2005) Fenton-like 氧化中 NAPL 態污染物之氧化與二階反應係數。第十七屆土壤與地下水研討會論文集,新竹,第 490 頁。

葉桂君、陳韋舜、許啟裕、楊偉崙(2003)Fenton-like 氧化復育技術中含氯乙烯污染物與氫氧自由基反應係數之探討。第一屆土壤與地下水技術研討會論文集,新竹,第 2-35 頁。

葉桂君、陳韋舜、陳偉一、陳家銘(2003)中性 pH 條件下 Fenton-like反應不同鐵氧礦物催化過氧化氫之氫氧自由基生成。第八屆土壤及地下水污染整治研討會論文集,台北,第 261-270 頁。

葉桂君、楊偉崙、黃國林、陳庭堅(2005) Fenton-like 氧化反應中污染物競爭氫氧自由基之效應。第十七屆土壤與地下水研討會論文集,新竹,第 491 頁。

葉桂君、鄭仲彬 (1996) Fenton 現地復育受氯酚污染土壤影響因子之探討。第十一屆廢水處理技術研討會論文集,新竹,第555(6)-562頁。

董正釱、陳秋玟、王玫驊 (1994) 利用亞鐵離子催化過氧化氫處理二硝酚水溶液反應行為之研究,第十九屆廢水處理技術研討會論文集,桃園,第185-195頁。

維基百科,自由的百科全書,共軛體系,https://zh.wikipedia.org/zh-tw/%E5%85%B1%E8%BD%AD%E4%BD%93%E7%B3%BB

維基百科,自由的百科全書,亮藍FCF,https://zh.wikipedia.org/zh-tw/%E4%BA%AE%E8%93%9DFCF

盧明俊、陳重男、陳世哲(1998)探討針鐵礦表面催化過氧化氫分解氯酚類化合物。第二十三屆廢水處理技術研討會論文集,台北,第 642-648頁。

盧明俊、陳重男、粟華新、詹益欽(1997)利用針鐵礦催化過氧化氫分解 2-氯酚。第 22 屆廢水處理技術研討會論文集,新竹,第 147-154 頁。

Barbeni M., C. Minero, E. Pelizzetti, E. Borgarello and N. Serpone (1987) Chemical Degradation of Chlorophenols with Fenton’s Reagent, Chemosphere, Vol.16, pp.2225-2237.

Barton, L. L., and B. C. Hemming (1993) Iron Chelation in Plants and Soil Micro-organisms, pp.133-165, New York, San Diego.: Academic Press Inc.



Burbano, A. A., D. D. Dionysiou, M. T. Suidan, and T. L. Richardson (2005) Oxidation kinetics and effect of pH on the degradation of MTBE with Fenton reagent. Water Research. Vol.39, pp.107-118.

Carlton, H. L., M. A. A. Shebl, and R. J. Watts (1995) Development of an injection for in situ catalyzed peroxide remediation of contaminated soil, Hazardous Waste and Hazardous Materials, Vol.12, pp.15-25.

Chen P. H. and R. J. Watts (2000) Determination of Rates of Hydroxyl Radical Generation in mineral-Catalyzed Fenton-like Oxidationm, Journal of the Chinese Institute of Environmental Engineering, Vol.10, No.3, pp.201-208.

Chen, C. T., N. A. Tafuri, M. Rahman, and B. M. Forest (1998) Chemical oxidation treatment of petroleum contaminated soil using Fenton’s reagent. Journal of Environment Science and Health. Vol.33, No.6, pp.987-1008.

Chen, P. H., and Watts, R. J. (2000) Determination of rates of hydroxyl radical generation in mineral-catalyzed Fenton-like oxidation. Journal of the Chinese Institute of Environmental Engineering, Vol.10, pp.201-208.

Fenton, H. J. H., (1894) Oxidation of tartaric acid in presence of iron.Journal of Chemical Society. Vol.5, pp.889-910.

Gates, D. D., and R. L. Siegrist (1995) In-Situ Chemical Oxidation of Trichloroethylene Using Hydrogen Peroxide, Journal of Environmental Engineering, Vol.121, No.9, pp.639-644.

Hsueh, C. L., Huang, Y. H., Wang, C. C., Chen, C. Y. (2005) Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system. Chemosphere, Vol.58, pp.1409-1414.

Huang, C. P., C. D. Dong, and Z. M. Tang (1995) Advanced chemical oxidation: it’s present role and potential future in hazardous waste treatment. Chemical Engineering Progress. Vol.25, pp.62-66.

Kakarla, K. C. and R. J. Watts (1997) Depth of Fenton-like oxidation in remediation of surface soil. Journal of Environmental Engineering. Vol.123, pp.11-17.
Khan, M. A., and R. J. Watts (1996) Mineral-catalyzed peroxidation of tetrachloroethylene, Water Air and Soil Pollution, Vol.88, No.2, pp.247-260.

Kiwi, J., C. Pulgrain, and P. Peringer (1994) Effect of Fenton and photo-Fenton on the degradation and biodegradability of 2-nitrophenols and 4-nitrophenols in water-treatment. Applied Catalysis B: Environment. Vol.3, No.4, pp.335-350.

Kochany, E. L., Sprash, G., Harms, S. (1995) Influence of some ground- water and surface water constituents on degradation of 4-chlorophenol by the Fenton reaction. Chemosphere, Vol.30, pp.9-20.

Kong S. H. and R. J. Watts (1998) Treatment of petroleum-contaminated soils using iron mineral catalyzed hydrogen peroxide, Chemosphere, Vol.37, No.8, pp.1473-1482.

Leung, S. W., R. J. Watts, and G. C. Miller (1992) Degradation of perchloroe-thylene by Fenton’s reagent. Journal of Environmental Quality. Vol.21, pp.377-381.

Lin, S. S. and M. D. Gurol (1998) Catalytic decomposition of hydrogen mechanism, and implications. Environmental Science and Technology. Vol.32, pp. 1417-1423.

Lindsey, E. M. and A. M. Tarr (2000) Quantitation of hydroxyl radical during Fenton oxidation following a single addition of ion and peroxide. Chemosphere. Vol.41, pp.409-417.

Lu. M. C. (2000) Oxidation of Chlorophenols with Hydrogen Peroxide in the Presence of Goethite, Chemosphere., Vol.40, pp.125-130.

Mehra, O. P., and Jackson, M. L. (1960) Iron oxides removed from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate, Clays Clay Miner., Vol.7, pp.317-327.

Pignatello, J. J. (1992) Dark and photoassisted Fe3+ catalyzed of chlorophenoxy herbicides by hydrogen. Environment Science and Technology. Vol.26, pp. 944-951.

Rajaroplan, V. and R. W. Peters (1993) Chemical oxidation technology: ultraviolet light/hydrogen peroxide、Fenton reagent and titanium dioxide-assisted phoyocatalysis. Hazardous Waste and Hazardous Materials. Vol.10, pp. 107-149.

Ravikumar J. X., and M. D. Gurol (1994) Chemical oxidation of chlorinated organics by hydrogen peroxide in the presence of sand, Environmental Science & Technology., Vol.28, No.3, pp. 394-400.

Tang W. Z. and C. P. Hung (1995) The effect of Chlorine Position of Chorinated Phenols on their Dechlorination Kinetics by Fenton’s Reagent, Waste Management, Vol.15, No.8, pp.615-622.

Tyre B. W., R. J. Watts, G. C. Miller (1991) Treatment of Four Biorefractory Contaminants in Soils Using Catalyzed Hydrogen Peroxide, Journal of Environmental Engineering., Vol.20, pp. 832-838.

Valentine R. L. and H. Wang (1998) Iron Oxide Surface Catalyzed Oxidation of Quinoline by Hydrogen Peroxide, Journal of Environmental Engineering., Vol.124, No.1, pp.31-38.

Watts R. J. and P. C. Stanton (1999a) Minerlization of Sorbed and NAPL-Phase by Catalyzed Hydrogen Peroxide, Water Research., Vol.33, No.6, pp.1405-1414.

Watts R. J., K. F. Michael, S. H. Kong and L. T. Amy (1999b) Hydrogen Peroxide Decomposition in Model Subsurface Systems. Journal of Hazardous Materials., B69, pp.229-243.

Watts R. J., M. D. Udell and P. A. Rauch (1990) Treatment of Pentachlorophenol Contaminated Soil Using Fenton’s Reagent, Hazardous Waste & Hazardous Materials., Vol.7, pp.335-345.

Watts R. J., M. D. Udell and R. M. Monsen (1993) Use of iron minerals in optimizing the peroxide treatment of contaminated soils, Water Environment Research., Vol.65, No.7, pp.839-844.



Watts R. J., R. H. Daniel, P. J. Alexander and L. T. Amy (2000a) A Foundation for the Risk-Based Treatment of Gasoline-Contaminated Soils Using Modified Fenton`s Reaction, Journal of Hazardous Materials., B76, pp.73-89.

Watts R. J., S. H. Kong, D. Marc and T. B. William (1994) Oxidation of Sorbed Hexachlorobenzene in Soils Using Catalyzed Hydrogen Peroxide, Journal of Hazardous Materials, Vol.39, pp.33-47.

Watts, J. R., R. D. Haller, P. A. Jones, and L. A. Tell (2000b) A foundation for the risk-based treatment of gasoline-contaminated soils using modified Fenton’s reactions. Journal of Hazardous Materials. Vol.76, pp.73-89.

Watts, R. J., Foget, M. K., Kong, S. H., Amy, L. T. (1999c) Hydrogen peroxide decomposition in model subsurface systems. Journal of Hazardous Materials, Vol.69, pp.229-243.

Watts, R. J., M. D. Udell, and P. A. Rauch (1990) Treatment of penta- chlorophenol contaminated soil using Fenton’s reagent. Hazardous Waste and Hazardous Materials. Vol.7, pp.335-345.

Watts, R. J., N. H. Quen, and L. Amy (2003) Effect of contaminant hydrophobicity on hydrogen peroxide dosage requirements in the Fenton-like treatment of soils. Journal of Hazardous Materials. Vol.102, pp.277-289.

Watts, R. J., R. H. Daniel, P. J. Alexander, and L. T. Amy (2000c) A foundation for the risk-based treatment of gasoline-contaminated soils using modified Fenton’s reaction. Journal of Hazardous Materials. Vol.76, pp.73-89.

Xiang, R. X., Y. Z. Zhen, Y. L. Xiao, and D. G.. Ji (2004) Chemical oxidative degradation of methyl tert-butyl ether in aqueous solution by Fenton’s reagent. Chemosphere. Vol.55, pp.73-79.

Xu, S. R., Z. Y. Zhao, X. Y. Li, and J. D. Gu (2004) Chemical oxidative degradation of methyl tert-butyl ether in aqueous solution by Fenton’s reagent. Chemosphere. Vol.55, pp.73-79.



Yeh, C.K., Y. A. Kao, and C. P. Cheng (2002) Oxidation of chlorophenols in soil at natural pH by catalyzed hydrogen peroxide: the effect of soil organic matter. Chemosphere. Vol.46, pp.67-73.
指導教授 秦靜如(Ching-Ju Chin) 審核日期 2024-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明