參考文獻 |
Reference
[1] Bhojane, P., "Recent advances and fundamentals of Pseudocapacitors: Materials, mechanism, and its understanding", J. Energy Storage, vol. 45, no. October 2021, p. 103654, 2022, doi: 10.1016/j.est.2021.103654.
[2] González, A., Goikolea, E., Barrena, J. A., & Mysyk, R., "Review on supercapacitors: Technologies and materials", Renew. Sustain. Energy Rev., vol. 58, pp. 1189–1206, 2016, doi: 10.1016/j.rser.2015.12.249.
[3] Sk, M. M., Yue, C. Y., Ghosh, K., & Jena, R. K., "Review on advances in porous nanostructured nickel oxides and their composite electrodes for high-performance supercapacitors", J. Power Sources, vol. 308, pp. 121–140, 2016, doi: 10.1016/j.jpowsour.2016.01.056.
[4] Ray A., Korkut D., and Saruhan B., "Efficient flexible all-solid supercapacitors with direct sputter-grown needle-like mn/mnox @graphite-foil electrodes and ppc-embedded ionic electrolytes", Nanomaterials, vol. 10, no. 9, pp. 1–13, 2020, doi: 10.3390/nano10091768.
[5] Attia, S. Y., Mohamed, S. G., Barakat, Y. F., Hassan, H. H., and Al Zoubi W., "Supercapacitor electrode materials: Addressing challenges in mechanism and charge storage", Review in Inorg. Chemistry, vol. 42, no. 1, pp. 53–88, 2022, doi: 10.1515/revic-2020-0022.
[6] Theerthagiri, J., Karuppasamy, K., Durai, G., Rana, A. U. H. S., Arunachalam, P., Sangeetha, K., Kuppusami, P., & Kim, H.-S., "Recent advances in metal chalcogenides (MX; X = S, Se) nanostructures for electrochemical supercapacitor applications: A brief review", Nanomaterials, vol. 8, no. 4, 2018, doi: 10.3390/nano8040256.
[7] Xie, Y., Zhang, J., Xu, H., & Zhou, T., "Laser-assisted mask-free patterning strategy for high-performance hybrid micro-supercapacitors with 3D current collectors", Chem. Eng. J., vol. 437, no. P2, p. 135493, 2022, doi: 10.1016/j.cej.2022.135493.
[8] Shaha, H. U., Wanga, F., Javed, M. S., Ahmad, M. A., Saleem, M., Zhan, J., Khan, Z. U. H., & Lia, Y., "In-situ growth of MnO2 nanorods forest on carbon textile as efficient electrode material for supercapacitors", J. Energy Storage, vol. 17, no. April, pp. 318–326, 2018, doi: 10.1016/j.est.2018.03.015.
[9] Wang, Y., Sun, L., Xiao, D., Du, H., Yang, Z., Wang, X., Tu, L., Zhao, C., Hu, F., & Lu, B., "Silicon-Based 3D All-Solid-State Micro-Supercapacitor with Superior Performance", ACS Appl. Mater. Interfaces, vol. 12, no. 39, pp. 43864–43875, Sep. 2020, doi: 10.1021/acsami.0c14441.
[10] Jiang, Q., Kurra, N., Xia, C., & Alshareef, H. N., "Hybrid Microsupercapacitors with Vertically Scaled 3D Current Collectors Fabricated using a Simple Cut-and-Transfer Strategy", Adv. Energy Materials, vol. 7, no. 1, p. 1601257, Jan. 2017, doi: 10.1002/aenm.201601257.
[11] Afif, A., Rahman, S. M. H., Azad, A. T., Zaini, J., Islan, M. A., & Azad, A. K. "Advanced materials and technologies for hybrid supercapacitors for energy storage – A review", J. Energy Storage, vol. 25, no. July, p. 100852, 2019, doi: 10.1016/j.est.2019.100852.
[12] Yang, X.-Y., Chen, L.-H., Li, Y., Rooke, J. C., Sanchez, C., & Su, B.-L., "Hierarchically porous materials: Synthesis strategies and structure design", Chem. Soc. Rev., vol. 46, no. 2, pp. 481–558, 2017, doi: 10.1039/c6cs00829a.
[13] Kyeremateng, N. A., Brousse, T., and Pech, D., "Microsupercapacitors as miniaturized energy-storage components for on-chip electronics", Nat. Nanotechnol., vol. 12, no. 1, pp. 7–15, 2017, doi: 10.1038/nnano.2016.196.
[14] Jensen, L. S., Kaul, C., Juncker, N. B., Thomsen, M. H., & Chaturvedi T., "Biohydrogen Production in Microbial Electrolysis Cells Utilizing Organic Residue Feedstock: A Review", Energies, vol. 15, no. 22, 2022, doi: 10.3390/en15228396.
[15] Liu, P., Wang, J., Wang, X., Liu, L., Yan, X., Wang, H., Lu, Q., Wang, F., & Ren, Z., "A superhydrophilic NiFe electrode for industrial alkaline water electrolysis", Int. J. Hydrogen Energy, no. xxxx, 2023, doi: 10.1016/j.ijhydene.2023.07.253.
[16] Zhao, J., Zhang, J. J., Li, Z. Y., & Bu, X. H., "Recent Progress on NiFe-Based Electrocatalysts for the Oxygen Evolution Reaction", Small, vol. 16, no. 51, pp. 1–23, 2020, doi: 10.1002/smll.202003916.
[17] Trotochaud, L., Young, S. L., Ranney, J. K., & Boettcher, S. W., "Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation", J. Am. Chem. Soc., vol. 136, no. 18, pp. 6744–6753, 2014, doi: 10.1021/ja502379c.
[18] Vij, V., Sultan, S., Harzandi, A. M., Meena, A., Tiwari, J. N., Lee, W. G., Yoon, T., & Kim, K. S., "Nickel-based electrocatalysts for energy-related applications: Oxygen reduction, oxygen evolution, and hydrogen evolution reactions", ACS Catalysis, vol. 7, no. 10, pp. 7196–7225, 2017, doi: 10.1021/acscatal.7b01800.
[19] Yu, C., Zhang, L., Shi, J., Zhao, J., Gao, J., & Yan, D., "A simple template-free strategy to synthesize nanoporous manganese and nickel oxides with narrow pore size distribution, and their electrochemical properties", Adv. Funct. Mater., vol. 18, no. 10, pp. 1544–1554, 2008, doi: 10.1002/adfm.200701052.
[20] Gibson, L. J., "Biomechanics of cellular solids", J. Biomech., vol. 38, no. 3, pp. 377–399, 2005, doi: 10.1016/j.jbiomech.2004.09.027.
[21] Egorov, V., and O’Dwyer, C., "Architected porous metals in electrochemical energy storage", Current Opinion in Electrochemistry, vol. 21, pp. 201–208, 2020, doi: 10.1016/j.coelec.2020.02.011.
[22] Wu, L., Li, Y., Fu, Z., and Su, B. L., "Hierarchically structured porous materials: Synthesis strategies and applications in energy storage", National Science Rev., vol. 7, no. 11, pp. 1667–1701, 2020, doi: 10.1093/nsr/nwaa183.
[23] Liu, Z., Yuan, X., Zhang, S., Wang, J., Huang, Q., Yu, N., Zhu, Y., Fu, L., Wang, F., Chen, Y., & Wu, Y., "Three-dimensional ordered porous electrode materials for electrochemical energy storage", NPG Asia Materials, vol. 11, no. 1, 2019, doi: 10.1038/s41427-019-0112-3.
[24] Yeo, S. J., Oh, M. J., and Yoo, P. J., "Structurally Controlled Cellular Architectures for High-Performance Ultra-Lightweight Materials", Adv. Materials., vol. 31, no. 34, pp. 1–26, 2019, doi: 10.1002/adma.201803670.
[25] Hedayat, N., Du, Y., and Ilkhani, H., "Review on fabrication techniques for porous electrodes of solid oxide fuel cells by sacrificial template methods", Renew. Sustain. Energy Rev., vol. 77, no. March, pp. 1221–1239, 2017, doi: 10.1016/j.rser.2017.03.095.
[26] Li-Yin, G., Hao-Kun, Y., Xuan, C., Wei-Dong, T., Xing-Ming, H., and Zhi-Quan, L., "The development of porous metallic materials: a short review of fabrication, characteristics, and applications", Phys. Scr., vol. 98, no. 12, p. 122001, 2023, doi: 10.1088/1402-4896/ad086c.
[27] Rashed, M. G., Ashraf, M., and Hazell, P. J., "Manufacturing Issues and the Resulting Complexity in Modeling of Additively Manufactured Metallic Microlattices", Appl. Mechanic and Materials, vol. 853, pp. 394–398, 2016, doi: 10.4028/www.scientific.net/amm.853.394.
[28] Singh, S., and Bhatnagar, N., "A survey of fabrication and application of metallic foams (1925–2017)", J. Porous Materials, vol. 25, no. 2, pp. 537–554, 2018, doi: 10.1007/s10934-017-0467-1.
[29] Sutygina, A., Betke, U., and Scheffler, M., "Open-Cell Aluminum Foams by the Sponge Replication Technique: A Starting Powder Particle Study", Adv. Eng. Materials., vol. 22, no. 5, pp. 24–26, 2020, doi: 10.1002/adem.201901194.
[30] Song, T., Yan, M., and Qian, M., "The enabling role of dealloying in the creation of specific hierarchical porous metal structures—A review", Corros. Sci., vol. 134, pp. 78–98, 2018, doi: 10.1016/j.corsci.2018.02.013.
[31] Xue, Y., Wang, X., Wang, W., Zhong, X., and Han, F., "Compressive property of Al-based auxetic lattice structures fabricated by 3-D printing combined with investment casting", Mater. Sci. Eng. A, vol. 722, pp. 255–262, 2018, doi: 10.1016/j.msea.2018.02.105.
[32] Rashed, M. G., Ashraf, M., Mines, R. A. W., and Hazell, P. J., "Metallic microlattice materials: A current state of the art on manufacturing, mechanical properties and applications", Materials and Design, vol. 95, pp. 518–533, 2016, doi: 10.1016/j.matdes.2016.01.146.
[33] Pang, Y., Cao, Y., Chu, Y., Liu, M., Snyder, K., MacKenzie, D., & Cao, C., "Additive Manufacturing of Batteries", Adv. Funct. Materials, vol. 30, no. 1, pp. 1–22, 2020, doi: 10.1002/adfm.201906244.
[34] Gulzar, U., Glynn, C., and O’Dwyer, C., "Additive manufacturing for energy storage: Methods, designs and material selection for customizable 3D printed batteries and supercapacitors", Curr. Opin. Electrochemistry, vol. 20, pp. 46–53, 2020, doi: 10.1016/j.coelec.2020.02.009.
[35] Mahmoud, D., Elbestawi, M. A., and Yu, B., "Process-structure-property relationships in selective laser melting of porosity graded gyroids", J. Med. Devices, Trans. ASME, vol. 13, no. 3, 2019, doi: 10.1115/1.4043736.
[36] Park, S.-I., Rosen, D. W., Choi, S.-K., & Duty, C. E., "Effective mechanical properties of lattice material fabricated by material extrusion additive manufacturing", Addit. Manufacturing, vol. 1, pp. 12–23, 2014, doi: 10.1016/j.addma.2014.07.002.
[37] Shaukat, U., Rossegger, E., and Schlögl, S., "A Review of Multi-Material 3D Printing of Functional Materials via Vat Photopolymerization", Polymers (Basel)., vol. 14, no. 12, 2022, doi: 10.3390/polym14122449.
[38] Gao, Y., Lin, Y., Peng, Z., Zhou, Q., & Fan, Z., "Accelerating ion diffusion with unique three-dimensionally interconnected nanopores for self-membrane high-performance pseudocapacitors", Nanoscale, vol. 9, no. 46, pp. 18311–18317, 2017, doi: 10.1039/c7nr06234f.
[39] Wu, S., Hui, K. S., Hui, K. N., and Kim, K. H., "Ultrathin porous NiO nanoflake arrays on nickel foam as an advanced electrode for high performance asymmetric supercapacitors", J. Material Chemistry A, vol. 4, no. 23, pp. 9113–9123, 2016, doi: 10.1039/c6ta02005d.
[40] Wu, H. B., Pang, H., & Lou, X. W. D., "Facile synthesis of mesoporous Ni0.3Co2.7O4 hierarchical structures for high-performance supercapacitors", Energy Environ. Sci., vol. 6, no. 12, pp. 3619–3626, 2013, doi: 10.1039/c3ee42101e.
[41] Park, S. H., Kaur, M., Yun, D., and Kim, W. S., "Hierarchically Designed Electron Paths in 3D Printed Energy Storage Devices", Langmuir, vol. 34, no. 37, pp. 10897–10904, 2018, doi: 10.1021/acs.langmuir.8b02404.
[42] Yu, Z., Cheng, Z., Tsekouras, G., Wang, X., Kong, X., Osada, M., & Dou, S. X., "High areal capacitance and rate capability using filled Ni foam current collector", Electrochimica Acta, vol. 281, pp. 761–768, 2018, doi: 10.1016/j.electacta.2018.06.007.
[43] Salleh, N. A., Kheawhom, S., and Mohamad, A. A., "Characterizations of nickel mesh and nickel foam current collectors for supercapacitor application", Arab. J. Chem., vol. 13, no. 8, pp. 6838–6846, 2020, doi: 10.1016/j.arabjc.2020.06.036.
[44] Sun, P.-P., Zhang, Y.-H., Pan, G.-X., Yu, X., Shi, Q., Tian, B., Gao, J., & Shi, F.-N., "Application of NiO-modified NiCo2O4 hollow spheres for high performance lithium ion batteries and supercapacitors", J. Alloys Compound., vol. 832, p. 154954, 2020, doi: 10.1016/j.jallcom.2020.154954.
[45] Zhang, H. and Braun, P. V., "Three-dimensional metal scaffold supported bicontinuous silicon battery anodes", Nano Letters, vol. 12, no. 6, pp. 2778–2783, 2012, doi: 10.1021/nl204551m.
[46] Needham, S. A., Wang, G. X., and Liu, H. K., "Synthesis of NiO nanotubes for use as negative electrodes in lithium-ion batteries", J. Power Sources, vol. 159, no. 1 SPEC. ISS., pp. 254–257, 2006, doi: 10.1016/j.jpowsour.2006.04.025.
[47] Geaney, H., McNulty, D., O′Connell, J., Holmes, J. D., and O′Dwyer, C., "Assessing Charge Contribution from Thermally Treated Ni Foam as Current Collectors for Li-Ion Batteries", J. Electrochem. Soc., vol. 163, no. 8, pp. A1805–A1811, 2016, doi: 10.1149/2.0071609jes.
[48] Ebrahim, R., Yeleuov, M., and Ignatiev, A., "3D Porous Nickel Anode for Low Temperature Thin Solid Oxide Fuel Cell Applications", Adv. Mater. Technol., vol. 2, no. 10, pp. 1–5, 2017, doi: 10.1002/admt.201700098.
[49] Wang, X., Jia, L., Li, K., Yan, D., Chi, B., Pu, J., & Jian, L., "Porous nickel-iron alloys as anode support for intermediate temperature solid oxide fuel cells: II. Cell performance and stability", Int. J. Hydrogen Energy, vol. 43, no. 45, pp. 21030–21036, 2018, doi: 10.1016/j.ijhydene.2018.09.142.
[50] Reisert, M., Berova, V., Aphale, A., Singh, P., and Tucker, M. C., "Oxidation of porous stainless steel supports for metal-supported solid oxide fuel cells", Int. J. Hydrogen Energy, vol. 45, no. 55, pp. 30882–30897, 2020, doi: 10.1016/j.ijhydene.2020.08.015.
[51] Chaudhari, N. K., Jin, H., Kim, B., and Lee, K., "Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting", Nanoscale, vol. 9, no. 34, pp. 12231–12247, 2017, doi: 10.1039/c7nr04187j.
[52] Kumar, A. and Bhattacharyya, S., "Porous NiFe-Oxide Nanocubes as Bifunctional Electrocatalysts for Efficient Water-Splitting", ACS Appl. Mater. Interfaces, vol. 9, no. 48, pp. 41906–41915, 2017, doi: 10.1021/acsami.7b14096.
[53] Shinagawa, T., Garcia-Esparza, A. T., and Takanabe, K., "Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion", Sci. Rep., vol. 5, no. August, pp. 1–21, 2015, doi: 10.1038/srep13801.
[54] Latif, U., Ur Rehman, Z., Maqsood, M. F., Raza, M. A., Ali, S., Iqbal, M. J., Mehdi, S. M. Z., & Lee, N., "In situ growth of nickel ammonium phosphate ribbons on nickel foam for supercapacitor applications", Int. J. Hydrogen Energy, vol. 44, no. 1, pp. 1–15, 2023, doi: 10.1039/c5ta10063a.
[55] Bu, F., Zhou, W., Xu, Y., Du, Y., Guan, C., and Huang, W., "Recent developments of advanced micro-supercapacitors: design, fabrication and applications", npj Flex. Electronics, vol. 4, no. 1, pp. 1–16, 2020, doi: 10.1038/s41528-020-00093-6.
[56] Zhou, L., Nyberg, K., and Rowat, A. C., "Understanding diffusion theory and Fick′s law through food and cooking", Adv. Physiology Education, vol. 39, no. 1, pp. 192–197, 2015, doi: 10.1152/advan.00133.2014.
[57] Vidal-Iglesias, F. J., Solla-Gullón, J., Rodes, A., Herrero, E., & Aldaz, A., "Understanding the Nernst equation and other electrochemical concepts: An easy experimental approach for students", J. Chem. Education, vol. 89, no. 7, pp. 936–939, 2012, doi: 10.1021/ed2007179.
[58] J. Bard, Allen and Faulkner, Larry R., "Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 2001, 2nd ed.", Russian J. Electrochemistry, vol. 38, no. 12, pp. 1364–1365, 2002, doi: 10.1023/A:1021637209564.
[59] De, P., Halder, J., Gowda, C. C., Kansal, S., Priya, S., Anshu, S., Chowdhury, A., Mandal, D., Biswas, S., Dubey, B. K., & Chandra, A., "Role of porosity and diffusion coefficient in porous electrode used in supercapacitors – Correlating theoretical and experimental studies", Electrochem. Sci. Adv., vol. 3, no. 1, pp. 1–15, 2023, doi: 10.1002/elsa.202100159.
[60] Zhao, C., Liu, Y., Beirne, S., Razal, J., and Chen, J., "Recent Development of Fabricating Flexible Micro-Supercapacitors for Wearable Devices", Adv. Mater. Technol., vol. 3, no. 9, pp. 1–16, 2018, doi: 10.1002/admt.201800028.
[61] Pan, Z., Yang, J., Kong, J., Loh, X. J., Wang, J., and Liu, Z., "Porous and Yet Dense Electrodes for High-Volumetric-Performance Electrochemical Capacitors: Principles, Advances, and Challenges", Adv. Sci., vol. 9, no. 4, 2022, doi: 10.1002/advs.202103953.
[62] Zhang, Y., Cui, W., Li, L., Zhan, C., Xiao, F., and Quan, X., "Effect of aligned porous electrode thickness and pore size on bubble removal capability and hydrogen evolution reaction performance", J. Power Sources, vol. 580, no. May, p. 233380, 2023, doi: 10.1016/j.jpowsour.2023.233380.
[63] Ferrero, G. A., Preuss, K., Fuertes, A. B., Sevilla, M., and Titirici, M. M., "The influence of pore size distribution on the oxygen reduction reaction performance in nitrogen-doped carbon microspheres", J. Mater. Chem. A, vol. 4, no. 7, pp. 2581–2589, 2016, doi: 10.1039/c5ta10063a.
[64] Wang, G., Zhang, L., and Zhang, J., "A review of electrode materials for electrochemical supercapacitors", Chem. Soc. Rev., vol. 41, no. 2, pp. 797–828, 2012, doi: 10.1039/c1cs15060j.
[65] Caglar, M., Ilican, S., Caglar, Y., and Yakuphanoglu, F., "Electrical conductivity and optical properties of ZnO nanostructured thin film", Appl. Surface Science, vol. 255, no. 8, pp. 4491–4496, 2009, doi: 10.1016/j.apsusc.2008.11.055.
[66] Pandolfo, A. G. and Hollenkamp A. F., "Carbon properties and their role in supercapacitors", J. Power Sources, vol. 157, no. 1, pp. 11–27, 2006, doi: 10.1016/j.jpowsour.2006.02.065.
[67] Sholklapper, T. Z., Kurokawa, H., Jacobson, C. P., Visco, S. J. and De Jonghe, L. C., "Nanostructured solid oxide fuel cell electrodes", Nano Letters, vol. 7, no. 7, pp. 2136–2141, 2007, doi: 10.1021/nl071007i.
[68] Du, Y., Hedayat, N., Panthi, D., Ilkhani, H., Emley, B. J., and Woodson, T., "Freeze-casting for the fabrication of solid oxide fuel cells: A review", Materialia, vol. 1, no. July, pp. 198–210, 2018, doi: 10.1016/j.mtla.2018.07.005.
[69] Zheng, S., Li, Z., Wu, Z.-S., Dong, Y., Zhou, F., Wang, S., Fu, Q., Sun, C., Guo, L., & Bao, X., "High Packing Density Unidirectional Arrays of Vertically Aligned Graphene with Enhanced Areal Capacitance for High-Power Micro-Supercapacitors", ACS Nano, vol. 11, no. 4, pp. 4009–4016, 2017, doi: 10.1021/acsnano.7b00553.
[70] Dinha, T. M., Achoura, A., Vizireanuc, S., Dinescu, G., Nistord, L., Armstrong, K., Guaye, D., & Pech, D., "Hydrous RuO2/carbon nanowalls hierarchical structures for all-solid-state ultrahigh-energy-density micro-supercapacitors", Nano Energy, vol. 10, pp. 288–294, 2014, doi: 10.1016/j.nanoen.2014.10.003.
[71] Zu, L., He, J., Liu, X., Zhang, L., and Zhou, K., "Effect of pore orientation on the catalytic performance of porous NiMo electrode for hydrogen evolution in alkaline solutions", Int. J. Hydrogen Energy, vol. 44, no. 10, pp. 4650–4655, 2019, doi: 10.1016/j.ijhydene.2018.12.224.
[72] Sinha, P., Datar, A., Jeong, C., Deng, X., Chung, Y. G., and Lin, L. C., "Surface Area Determination of Porous Materials Using the Brunauer-Emmett-Teller (BET) Method: Limitations and Improvements", J. Phys. Chem. C, vol. 123, no. 33, pp. 20195–20209, 2019, doi: 10.1021/acs.jpcc.9b02116.
[73] Giesche, H., "Mercury porosimetry: A general (practical) overview", Particel and Particel Syst. Charact., vol. 23, no. 1, pp. 9–19, 2006, doi: 10.1002/ppsc.200601009.
[74] Ziel, R., Haus, A., and Tulke, A., "Quantification of the pore size distribution (porosity profiles) in microfiltration membranes by SEM, TEM and computer image analysis", J. Membrane Sci., vol. 323, no. 2, pp. 241–246, 2008, doi: 10.1016/j.memsci.2008.05.057.
[75] Sharma, K., Pareek, K., Rohan, R., and Kumar, P., "Flexible supercapacitor based on three-dimensional cellulose/graphite/polyaniline composite", Int. J. Energy Research, vol. 43, no. 1, pp. 604–611, 2019, doi: 10.1002/er.4277.
[76] Iro, Z. S., Subramani, C., and Dash, S. S., "A brief review on electrode materials for supercapacitor", Int. J. Electrochem. Sci., vol. 11, no. 12, pp. 10628–10643, 2016, doi: 10.20964/2016.12.50.
[77] Libich, J., Máca, J., Vondrák, J., Čech, O., and Sedlaříková, M., "Supercapacitors: Properties and applications", J. Energy Storage, vol. 17, no. March, pp. 224–227, 2018, doi: 10.1016/j.est.2018.03.012.
[78] Abdisattar, A., Yeleuov, M., Daulbayev, C., Askaruly, K., Tolynbekov, A., Taurbekov, A., & Prikhodko, N., "Recent advances and challenges of current collectors for supercapacitors", Electrochemistry Communication, vol. 142, no. August, p. 107373, 2022, doi: 10.1016/j.elecom.2022.107373.
[79] Chen, G. Z., "Supercapacitor and supercapattery as emerging electrochemical energy stores", Int. Materials Review, vol. 62, no. 4, pp. 173–202, 2017, doi: 10.1080/09506608.2016.1240914.
[80] Gandla, D., Chen, H., and Tan, D. Q., "Mesoporous structure favorable for high voltage and high energy supercapacitor based on green tea waste-derived activated carbon", Mater. Res. Express, vol. 7, no. 8, 2020, doi: 10.1088/2053-1591/abaf40.
[81] Sahoo, S., Kumar, R., Joanni, E., Singh, R. K., and Shim, J. J., "Advances in pseudocapacitive and battery-like electrode materials for high performance supercapacitors", J. Mater. Chem. A, vol. 10, no. 25, pp. 13190–13240, 2022, doi: 10.1039/d2ta02357a.
[82] Zhang, Y., Yu, S., Lou, G., Shen, Y., Chen, H., Shen, Z., Zhao, S., Zhang, J., Chai, S., & Zou, Q., "Review of macroporous materials as electrochemical supercapacitor electrodes", J. Mater. Sci., vol. 52, no. 19, pp. 11201–11228, 2017, doi: 10.1007/s10853-017-0955-3.
[83] Vandeginste, V., "A Review of Fabrication Technologies for Carbon Electrode-Based Micro-Supercapacitors", Appl. Sci., vol. 12, no. 2, 2022, doi: 10.3390/app12020862.
[84] Im, J. S., Kang, S. C., Lee, S. H., and Lee, Y. S., "Improved gas sensing of electrospun carbon fibers based on pore structure, conductivity and surface modification", Carbon, vol. 48, no. 9, pp. 2573–2581, 2010, doi: 10.1016/j.carbon.2010.03.045.
[85] Leitner, K., Lerf, A., Winter, M., Besenhard, J. O., Villar-Rodil, S., Suárez-García, F., Martínez-Alonso, A., & Tascón, J. M. D., "Nomex-derived activated carbon fibers as electrode materials in carbon-based supercapacitors", J. Power Sources, vol. 153, no. 2, pp. 419–423, 2006, doi: 10.1016/j.jpowsour.2005.05.078.
[86] Xu, J., Ruan, C., Li, P., and Xie, Y., "Excessive nitrogen doping of tin dioxide nanorod array grown on activated carbon fibers substrate for wire-shaped micro supercapacitor", Chem. Eng. J., vol. 378, p. 122064, 2019, doi: 10.1016/j.cej.2019.122064.
[87] Tang, Q., Chen, X., Zhou, D., and Liu, C., “Biomass-derived hierarchical porous carbon/silicon carbide composite for electrochemical supercapacitor", Colloids Surfaces A Physicochem. Eng. Asp., vol. 620, no. January, p. 126567, 2021, doi: 10.1016/j.colsurfa.2021.126567.
[88] Laszczyk, K. U., Futaba, D. N., Kobashi, K., Hata, K., Yamada, T., and Sekiguchi, A., "The limitation of electrode shape on the operational speed of a carbon nanotube-based micro-supercapacitor", Sustain. Energy Fuels, vol. 1, no. 6, pp. 1282–1286, 2017, doi: 10.1039/C7SE00101K.
[89] Wang, R., Luo, S., Xiao, C., Chen, Z., Li, H., Asif, M., Chan, V., Liao, K., & Sun, Y., "MXene-carbon nanotubes layer-by-layer assembly based on-chip micro-supercapacitor with improved capacitive performance", Electrochim. Acta, vol. 386, p. 138420, 2021, doi: 10.1016/j.electacta.2021.138420.
[90] Yang, H. J., Lee, J.-W., Seo, S. H., Jeong, B., Lee, B., Do, W. J., Kim, J. H., Cho, J. Y., Jo, A., Jeong, H. J., Jeong, S. Y., Kim, G.-H., Lee, G.-W., Shin, Y.-E., Ko, H., Han, J. T., & Park, J. H., "Fully stretchable self-charging power unit with micro-supercapacitor and triboelectric nanogenerator based on oxidized single-walled carbon nanotube/polymer electrodes", Nano Energy, vol. 86, no. February, p. 106083, 2021, doi: 10.1016/j.nanoen.2021.106083.
[91] Shao, Y., Li, J., Li, Y., Wang, H., Zhang, Q., and Kaner, R. B., "Flexible quasi-solid-state planar micro-supercapacitor based on cellular graphene films", Mater. Horizons, vol. 4, no. 6, pp. 1145–1150, 2017, doi: 10.1039/c7mh00441a.
[92] He, D., Marsden, A. J., Li, Z., Zhao, R., Xue, W., and Bissett, M. A., "A single step strategy to fabricate graphene fibers via electrochemical exfoliation for micro-supercapacitor applications", Electrochim. Acta, vol. 299, pp. 645–653, 2019, doi: 10.1016/j.electacta.2019.01.034.
[93] Kim, D.‐J, "Lattice Parameters, Ionic Conductivities, and Solubility Limits in Fluorite‐Structure MO2 Oxide [M = Hf4+, Zr4+, Ce4+, Th4+, U4+] Solid Solutions", J. Am. Ceram. Soc., vol. 72, no. 8, pp. 1415–1421, 1989, doi: 10.1111/j.1151-2916.1989.tb07663.x.
[94] Yang, J., Lian, L., Ruan, H., Xie, F., and Wei, M., "Nanostructured porous MnO2 on Ni foam substrate with a high mass loading via a CV electrodeposition route for supercapacitor application", Electrochimica Acta, vol. 136, pp. 189–194, 2014, doi: 10.1016/j.electacta.2014.05.074.
[95] Dai, M., Zhao, D., and Wu, X., "Research progress on transition metal oxide based electrode materials for asymmetric hybrid capacitors", Chinese Chem. Lett., vol. 31, no. 9, pp. 2177–2188, 2020, doi: 10.1016/j.cclet.2020.02.017.
[96] Yu, G., Hu, L., Liu, N., Wang, H., Vosgueritchian, M., Yang, Y., Cui, Y., & Bao, Z., "Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping", Nano Lett., vol. 11, no. 10, pp. 4438–4442, 2011, doi: 10.1021/nl2026635.
[97] Yu, D., Zhang, Z., Meng, Y., Teng, Y., Wu, Y., Zhang, X., Sun, Q., Tong, W., Zhao, X., & Liu, X., "The synthesis of hierarchical ZnCo2O4@MnO2 core-shell nanosheet arrays on Ni foam for high-performance all-solid-state asymmetric supercapacitors", Inorg. Chem. Front., vol. 5, no. 3, pp. 597–604, 2018, doi: 10.1039/c7qi00706j.
[98] Wang, Y., Song, Y., and Xia, Y., "Electrochemical capacitors: Mechanism, materials, systems, characterization and applications", Chem. Soc. Rev., vol. 45, no. 21, pp. 5925–5950, 2016, doi: 10.1039/c5cs00580a.
[99] Gao, H. and Lian, K., "Proton-conducting polymer electrolytes and their applications in solid supercapacitors: A review", RSC Adv., vol. 4, no. 62, pp. 33091–33113, 2014, doi: 10.1039/c4ra05151c.
[100] Huang, C., Zhang, J., Young, N. P., Snaith, H. J., and Grant P. S., "Solid-state supercapacitors with rationally designed heterogeneous electrodes fabricated by large area spray processing for wearable energy storage applications", Sci. Rep., vol. 6, no. April, pp. 1–15, 2016, doi: 10.1038/srep25684.
[101] Ben Cheikh, Z., El Kamel, F., Gallot-Lavallée, O., Soussou, M. A., Vizireanu, S., Achour, A., & Khirouni, K., "Hydrogen doped BaTiO3 films as solid-state electrolyte for micro-supercapacitor applications", J. Alloys Compound, vol. 721, pp. 276–284, 2017, doi: 10.1016/j.jallcom.2017.06.019.
[102] Huang, W., Li, J., and Xu, Y., "Nucleation and growth of porous MnO2 coatings prepared on nickel foam and evaluation of their electrochemical performance", Materials (Basel)., vol. 11, no. 5, 2018, doi: 10.3390/ma11050716.
[103] Devi, R., Kumar, V., Kumar, S., Bulla, M., Sharma, S., and Sharma A., "Electrochemical Analysis of MnO2 (α, β, and γ)-Based Electrode for High-Performance Supercapacitor Application", Appl. Sci., vol. 13, no. 13, p. 7907, Jul. 2023, doi: 10.3390/app13137907.
[104] Ren, G., Pan, X., Bayne, S., and Fan, Z., "Kilohertz ultrafast electrochemical supercapacitors based on perpendicularly-oriented graphene grown inside of nickel foam", Carbon, vol. 71, pp. 94–101, 2014, doi: 10.1016/j.carbon.2014.01.017.
[105] Chodankar, N. R., Pham, H. D., Nanjundan, A. K., Fernando, J. F. S., Jayaramulu, K., Golberg, D., Han, Y.-K., & Dubal, D. P., "True Meaning of Pseudocapacitors and Their Performance Metrics: Asymmetric versus Hybrid Supercapacitors", Small, vol. 16, no. 37, pp. 1–35, 2020, doi: 10.1002/smll.202002806.
[106] Ying, Z., Zhao, S., Yue, J., Ju, T., Zhang, Y., Xie, J., & Wang, Q., "3D hierarchical CuS micro fl owers constructed on copper powders filled nickel foam as advanced binder-free electrodes", J. Alloys Compd., vol. 821, p. 153437, 2020, doi: 10.1016/j.jallcom.2019.153437.
[107] Wei, M., Wu, X., Yao, Y., Yu, S., Sun, R., and Wong, C., "Toward High Micro-Supercapacitive Performance by Constructing Graphene-Supported NiMoS4 Hybrid Materials on 3D Current Collectors", ACS Sustain. Chem. Eng., vol. 7, no. 24, pp. 19779–19786, Dec. 2019, doi: 10.1021/acssuschemeng.9b04582.
[108] Zhang, W., Yu, Z., Chen, Z., and Li, M., "Preparation of super-hydrophobic Cu/Ni coating with micro-nano hierarchical structure", Mater. Lett., vol. 67, no. 1, pp. 327–330, 2012, doi: 10.1016/j.matlet.2011.09.114.
[109] Lee, J. R. and Kim, Y. H., "Agglomeration of nickel oxide particle during hydrogen reduction at high temperature in a fluidized bed reactor", Chem. Eng. Res. Des., vol. 168, pp. 193–201, 2021, doi: 10.1016/j.cherd.2021.02.005.
[110] Mathis, T. S., Kurra, N., Wang, X., Pinto, D., Simon, P., and Gogotsi, Y., "Energy Storage Data Reporting in Perspective—Guidelines for Interpreting the Performance of Electrochemical Energy Storage Systems", Adv. Energy Mater., vol. 9, no. 39, 2019, doi: 10.1002/aenm.201902007.
[111] Zhang, G., Wang, T., Yu, X., Zhang, H., Duan, H., and Lu, B., "Nanoforest of hierarchical Co3O4@NiCo2O4 nanowire arrays for high-performance supercapacitors", Nano Energy, vol. 2, no. 5, pp. 586–594, 2013, doi: 10.1016/j.nanoen.2013.07.008.
[112] Wang, J. G., Kang, F., and Wei, B., "Engineering of MnO2-based nanocomposites for high-performance supercapacitors", Prog. Mater. Sci., vol. 74, pp. 51–124, 2015, doi: 10.1016/j.pmatsci.2015.04.003.
[113] Harris, A. R., Grayden, D. B., and John, S. E., "Electrochemistry in a Two- or Three-Electrode Configuration to Understand Monopolar or Bipolar Configurations of Platinum Bionic Implants", Micromachines, vol. 14, no. 4, 2023, doi: 10.3390/mi14040722.
[114] Shin, J., Seo, J. K., Yaylian, R., Huang, A., and Meng, Y. S., "A review on mechanistic understanding of MnO2 in aqueous electrolyte for electrical energy storage systems", International Materials Rev., vol. 65, no. 6, pp. 356–387, 2020, doi: 10.1080/09506608.2019.1653520.
[115] You, B., Jiang, N., Sheng, M., Bhushan, M. W., and Sun, Y., "Hierarchically Porous Urchin-Like Ni2P Superstructures Supported on Nickel Foam as Efficient Bifunctional Electrocatalysts for Overall Water Splitting", ACS Catalysis, vol. 6, no. 2, pp. 714–721, 2016, doi: 10.1021/acscatal.5b02193.
[116] Angeles-Olvera, Z., Crespo-Yapur, A., Rodríguez, O., Cholula-Díaz, J. L., Martínez, L. M., & Videa, M., "Nickel-Based Electrocatalysts for Water Electrolysis", Energies, vol. 15, no. 5, p. 1609, Feb. 2022, doi: 10.3390/en15051609.
[117] Aykut, Y., & Bayrakçeken Yurtcan, A., "Nanostructured electrocatalysts for low-temperature water splitting: A review", Electrochim. Acta, vol. 471, no. October, 2023, doi: 10.1016/j.electacta.2023.143335.
[118] Yan, Y., Xia, B. Y., Zhao, B., and Wang, X., "A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting", J. Mater. Chem. A, vol. 4, no. 45, pp. 17587–17603, 2016, doi: 10.1039/C6TA08075H.
[119] Medford, A. J., Vojvodic, A., Hummelshøj, J. S., Voss, J., Abild-Pedersen, F., Studt, F., Bligaard, T., Nilsson, A., & Nørskov, J. K., "From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis", J. Catalysis, vol. 328, pp. 36–42, 2015, doi: 10.1016/j.jcat.2014.12.033.
[120] Wang, C., Jin, L., Shang, H., Xu, H., Shiraishi, Y., and Du, Y., "Advances in engineering RuO2 electrocatalysts towards oxygen evolution reaction", Chinese Chem. Lett., vol. 32, no. 7, pp. 2108–2116, 2021, doi: 10.1016/j.cclet.2020.11.051.
[121] Song, J., Wei, C., Huang, Z.-F., Liu, C., Zeng, L., Wang, X., & Xu, Z. J., "A review on fundamentals for designing oxygen evolution electrocatalysts", Chem. Soc. Rev., vol. 49, no. 7, pp. 2196–2214, 2020, doi: 10.1039/c9cs00607a.
[122] Hou, J., Wu, Y., Zhang, B., Cao, S., Li, Z., and Sun, L., "Rational Design of Nanoarray Architectures for Electrocatalytic Water Splitting", Adv. Funct. Mater., vol. 29, no. 20, pp. 1–39, 2019, doi: 10.1002/adfm.201808367.
[123] Suen, N. T., Hung, S. F., Quan, Q., Zhang, N., Xu, Y. J., and Chen, H. M., "Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives", Chem. Soc. Rev., vol. 46, no. 2, pp. 337–365, 2017, doi: 10.1039/c6cs00328a.
[124] Mohammed-Ibrahim, J., "A review on NiFe-based electrocatalysts for efficient alkaline oxygen evolution reaction", J. Power Sources, vol. 448, no. September, p. 227375, 2020, doi: 10.1016/j.jpowsour.2019.227375.
[125] Corrigan, D. A. and Maheswari, S. P., "Catalysis of the Oxygen Evolution Reaction By Trace Iron Impurities in Thin Film Nickel Oxide Electrodes", Electrochem. Soc. Ext. Abstr., vol. 85–1, pp. 934–935, 1985.
[126] Govind Rajan, A., Martirez, J. M. P., and Carter, E. A., "Facet-Independent Oxygen Evolution Activity of Pure β-NiOOH: Different Chemistries Leading to Similar Overpotentials", J. American Chem. Soc., vol. 142, no. 7, pp. 3600–3612, 2020, doi: 10.1021/jacs.9b13708.
[127] Sakamaki, A., Yoshida-Hirahara, M., Ogihara, H., and Kurokawa, H., "One-Step Synthesis of Highly Active NiFe Electrocatalysts for the Oxygen Evolution Reaction", Langmuir, pp. 1–6, 2022, doi: 10.1021/acs.langmuir.2c00097.
[128] Dionigi, F. and Strasser, P., "NiFe-Based (Oxy)hydroxide Catalysts for Oxygen Evolution Reaction in Non-Acidic Electrolytes", Adv. Energy Materials., vol. 6, no. 23, 2016, doi: 10.1002/aenm.201600621.
[129] Chen, M., Lu, S., Fu, X. Z., and Luo, J. L., "Core–Shell Structured NiFeSn@NiFe (Oxy)Hydroxide Nanospheres from an Electrochemical Strategy for Electrocatalytic Oxygen Evolution Reaction", Adv. Science, vol. 7, no. 10, 2020, doi: 10.1002/advs.201903777.
[130] Yan, C., Huang, J., Wu, C., Li, Y., Tan, Y., Zhang, L., Sun, Y., Huang, X., & Xiong, J., "In-situ formed NiS/Ni coupled interface for efficient oxygen evolution and hydrogen evolution", J. Mater. Sci. Technol., vol. 42, pp. 10–16, 2020, doi: 10.1016/j.jmst.2019.08.042.
[131] Klaus, S., Cai, Y., Louie, M. W., Trotochaud, L., and Bell, A. T., "Effects of Fe electrolyte impurities on Ni(OH)2/NiOOH structure and oxygen evolution activity", J. Phys. Chem. C, vol. 119, no. 13, pp. 7243–7254, 2015, doi: 10.1021/acs.jpcc.5b00105.
[132] Boumeriame, H., Da Silva, E. S., Cherevan, A. S., Chafik, T., Faria, J. L., and Eder, D., "Layered double hydroxide (LDH)-based materials: A mini-review on strategies to improve the performance for photocatalytic water splitting", J. Energy Chem., vol. 64, no. January, pp. 406–431, 2021, doi: 10.1016/j.jechem.2021.04.050.
[133] Zhang, Y., Xu, H., and Lu, S., "Preparation and application of layered double hydroxide nanosheets", RSC Adv., vol. 11, no. 39, pp. 24254–24281, 2021, doi: 10.1039/d1ra03289e.
[134] Zhang, X., Qiu, Y., Li, Q., Liu, F., Ji, X., and Liu, J., "Facile construction of well-defined hierarchical NiFe2O4/NiFe layered double hydroxides with a built-in electric field for accelerating water splitting at the high current density", Int. J. Hydrogen Energy, vol. 47, no. 97, pp. 40826–40834, 2022, doi: 10.1016/j.ijhydene.2022.09.171.
[135] Chen, Q., Wang, R., Lu, F., Kuang, X., Tong, Y., and Lu, X., "Boosting the Oxygen Evolution Reaction Activity of NiFe2O4 Nanosheets by Phosphate Ion Functionalization", ACS Omega, vol. 4, no. 2, pp. 3493–3499, 2019, doi: 10.1021/acsomega.8b03081.
[136] Gong, M., Wang, D. Y., Chen, C. C., Hwang, B. J., and Dai, H., "A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction", Nano Res., vol. 9, no. 1, pp. 28–46, 2016, doi: 10.1007/s12274-015-0965-x.
[137] Browne, M. P., Vasconcelos, J. M., Coelho, J., O′Brien, M., Rovetta, A. A., McCarthy, E. K., Nolan, H., Duesberg, G. S., Nicolosi, V., Colavita, P. E., & Lyons, M. E. G., "Sustainable Energy & Fuels Improving the performance of porous nickel foam for water oxidation using hydrothermally prepared Ni and Fe metal oxides", pp. 207–216, 2017, doi: 10.1039/c6se00032k.
[138] Feng, Y., Zhang, H., Fang, L., Mu, Y., and Wang, Y., "Uniquely Mono-dispersing NiFe Alloyed Nanoparticles in Three-dimensional Strongly Linked Sandwiched Graphitized Carbon Sheets for High-efficiency Oxygen Evolution Reaction", 2016, doi: 10.1021/acscatal.6b00481.
[139] Fu, G., Cui, Z., Chen, Y., Xu, L., Tang, Y., and Goodenough, J. B., "Hierarchically mesoporous nickel-iron nitride as a cost-efficient and highly durable electrocatalyst for Zn-air battery", Nano Energy, vol. 39, no. June, pp. 77–85, 2017, doi: 10.1016/j.nanoen.2017.06.029.
[140] Wang, H. F., Chen, L., Pang, H., Kaskel, S., and Xu, Q., "MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions", Chem. Soc. Rev., vol. 49, no. 5, pp. 1414–1448, 2020, doi: 10.1039/c9cs00906j.
[141] Zaman, N., Noor, T., and Iqbal, N., "Recent advances in the metal-organic framework-based electrocatalysts for the hydrogen evolution reaction in water splitting: a review", RSC Adv., vol. 11, no. 36, pp. 21904–21925, 2021, doi: 10.1039/d1ra02240g.
[142] Wang, J., Gao, Y., Kong, H., Kim, J., Choi, S., Ciucci, F., Hao, D. Y., Yang, S., Shao, Z., & Lim, J., "Non-precious-metal catalysts for alkaline water electrolysis: Operando characterizations, theoretical calculations, and recent advances", Chem. Soc. Rev., vol. 49, no. 24, pp. 9154–9196, 2020, doi: 10.1039/d0cs00575d.
[143] Connor, P., Schuch, J., Kaiser, B., and Jaegermann, W., "The Determination of Electrochemical Active Surface Area and Specific Capacity Revisited for the System MnOx as an Oxygen Evolution Catalyst", Zeitschrift fur Phys. Chemie, vol. 234, no. 5, pp. 979–994, 2020, doi: 10.1515/zpch-2019-1514.
[144] Cossar, E., Houache, M. S. E., Zhang, Z., and Baranova, E. A., "Comparison of electrochemical active surface area methods for various nickel nanostructures", J. Electroanal. Chem., vol. 870, p. 114246, 2020, doi: 10.1016/j.jelechem.2020.114246.
[145] Zheng, Y., Jiao, Y., Li, L. H., Xing, T., Chen, Y., Jaroniec, M., & Qiao, S. Z., "Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution", ACS Nano, vol. 8, no. 5, pp. 5290–5296, 2014, doi: 10.1021/nn501434a.
[146] Anantharaj, S., Karthik, P. E., Subramanian, B., and Kundu, S., "Pt Nanoparticle Anchored Molecular Self-Assemblies of DNA: An Extremely Stable and Efficient HER Electrocatalyst with Ultralow Pt Content", ACS Catal., vol. 6, no. 7, pp. 4660–4672, 2016, doi: 10.1021/acscatal.6b00965.
[147] Abbood, M. A., Althomali, R. H., Al‑dolaimy, F., Madueño Portilla, R., Abdullaev, S. S., Delgado Laime, M. D. C., Hassan, Z. F., Abbas, A. H. R., & Alsaalamy, A. H., "In situ alloying silver/copper nanostructure as efficient electrocatalysts toward electrochemical water splitting", Ionics (Kiel)., vol. 30, no. 1, pp. 433–444, 2024, doi: 10.1007/s11581-023-05264-9.
[148] Chen, F., Tang, M., Zhou, J., Zhang, H., Su, C., and Guo, S., "Fe-based amorphous alloy wire as highly efficient and stable electrocatalyst for oxygen evolution reaction of water splitting", J. Alloys Compound., vol. 955, p. 170253, 2023, doi: 10.1016/j.jallcom.2023.170253.
[149] Zhang, L., Cao, X., Guo, C., Hassan, A., Zhang, Y., and Wang, J., "Interface and morphology engineering of Ru-FeCoP hollow nanocages as alkaline electrocatalyst for overall water splitting", J. Environ. Chem. Eng., vol. 11, no. 6, p. 111373, 2023, doi: 10.1016/j.jece.2023.111373.
[150] Lan, K., Li, J., Zhu, Y., Gong, L., Li, F., Jiang, P., Niu, F., & Li, R., "Morphology engineering of CoSe2 as efficient electrocatalyst for water splitting", J. Colloid Interface Sci., vol. 539, pp. 646–653, 2019, doi: 10.1016/j.jcis.2018.12.044.
[151] Cogal, S., Celik Cogal, G., Mičušík, M., Kotlar, M., & Omastov, M., "Cobalt-doped WSe2@conducting polymer nanostructures as bifunctional electrocatalysts for overall water splitting", Int. J. Hydrogen Energy, vol. 49, no. xxxx, pp. 689–700, 2024, doi: 10.1016/j.ijhydene.2023.09.002.
[152] Yang, X., Wang, Y., Yang, X., Fu, S., Sui, G., Chai, D.-F., Li, J., & Guo, D., "Lattice strain assisted with interface engineering for designing efficient CoSe2-CoO core-shell microspheres as promising electrocatalysts towards overall water splitting", Colloids Surfaces A Physicochem. Eng. Asp., vol. 663, no. November 2022, p. 131039, 2023, doi: 10.1016/j.colsurfa.2023.131039.
[153] Dai, R., Zhang, H., Zhou, W., Zhou, Y., Ni, Z., Chen, J., Zhao, S., Zhao, Y., Yu, F., Chen, A., Wang, R., & Sun, T., "Interface engineering of bimetallic nitrides nanowires as a highly efficient bifunctional electrocatalyst for water splitting", J. Alloys Compound., vol. 919, p. 165862, 2022, doi: 10.1016/j.jallcom.2022.165862.
[154] Xu, X., Shao, Z., and Jiang, S. P., "High-Entropy Materials for Water Electrolysis", Energy Technol., vol. 10, no. 11, 2022, doi: 10.1002/ente.202200573.
[155] Wu, T., Dong, C., Sun, D., and Huang, F., "Enhancing electrocatalytic water splitting by surface defect engineering in two-dimensional electrocatalysts", Nanoscale, vol. 13, no. 3, pp. 1581–1595, 2021, doi: 10.1039/d0nr08009h.
[156] Shi, B., Han, X., He, X., and Cui, L., "Electrochemically engineering defect-rich nickel-iron layered double hydroxides as a whole water splitting electrocatalyst", Int. J. Hydrogen Energy, vol. 44, no. 42, pp. 23689–23698, 2019, doi: 10.1016/j.ijhydene.2019.07.082.
[157] Wang, B., Liu, W., Leng, Y., Yu, X., Wang, C., Hu, L., Zhu, X., Wu, C., Yao, Y., & Zou, Z., "Strain engineering of high-entropy alloy catalysts for electrocatalytic water splitting", iScience, vol. 26, no. 4, p. 106326, 2023, doi: 10.1016/j.isci.2023.106326.
[158] McCrory, C. C. L., Jung, S., Peters, J. C., and Jaramillo, T. F., "Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction", J. American Chem. Soc., vol. 135, no. 45, pp. 16977–16987, 2013, doi: 10.1021/ja407115p.
[159] Islam, M. S., Kurawaki, J., Kusumoto, Y., Abdulla-Al-Mamun, M., and Bin Mukhlish, M. Z., "Hydrothermal Novel Synthesis of Neck-structured Hyperthermia-suitable Magnetic (Fe3O4, γ-Fe2O3 and α-Fe2O3) Nanoparticles", J. Sci. Res., vol. 4, no. 1, p. 99, 2011, doi: 10.3329/jsr.v4i1.8727.
[160] Agusu, L., Alimin, La O., Ahmad, M. Z., Firihu, M. Z., Mitsudo, S., & Kikuchi, H., "Crystal and microstructure of MnFe2O4 synthesized by ceramic method using manganese ore and iron sand as raw materials", J. Phys. Conf. Ser., vol. 1153, no. 1, pp. 2–9, 2019, doi: 10.1088/1742-6596/1153/1/012056.
[161] Ahmed, K. A. M., Zeng, Q., Wu, K., and Huang, K., "Mn3O4 nanoplates and nanoparticles: Synthesis, characterization, electrochemical and catalytic properties", J. Solid State Chem., vol. 183, no. 3, pp. 744–751, 2010, doi: 10.1016/j.jssc.2010.01.015.
[162] Cai, L., Qiu, B., Lin, Z., Wang, Y., Ma, S., Wang, M., Tsang, Y. H., & Chai, Y., "Active site engineering of Fe- and Ni-sites for highly efficient electrochemical overall water splitting", J. Mater. Chem. A, vol. 6, no. 43, pp. 21445–21451, 2018, doi: 10.1039/C8TA08217K.
[163] Pazhamalai, P., Krishnamoorthy, K., Sahoo, S., Mariappan, V. K., and Kim, S. J., "Copper tungsten sulfide anchored on Ni-foam as a high-performance binder free negative electrode for asymmetric supercapacitor", Chem. Eng. J., vol. 359, no. November 2018, pp. 409–418, 2019, doi: 10.1016/j.cej.2018.11.153.
[164] Mei, B. A., Munteshari, O., Lau, J., Dunn, B., and Pilon, L., "Physical Interpretations of Nyquist Plots for EDLC Electrodes and Devices", J. Phys. Chem. C, vol. 122, no. 1, pp. 194–206, 2018, doi: 10.1021/acs.jpcc.7b10582.
[165] Kumar, M. P., Sasikumar, M., Arulraj, A., Rajasudha, V., Murugadoss, G., Rajesh Kumar, M., Peera, S. G., & Mangalaraja, R. V., "NiFe Layered Double Hydroxide Electrocatalyst Prepared via an Electrochemical Deposition Method for the Oxygen Evolution Reaction", Catalysts, vol. 12, no. 11, 2022, doi: 10.3390/catal12111470. |