參考文獻 |
Alanyali, M., Moat, H. S., & Preis, T. (2013). Quantifying the Relationship Between Financial News and the Stock Market. Scientific Reports, 3(1), 3578.
Arora, S., Liang, Y., & Ma, T. (2017). A Simple but Tough-to-beat Baseline for Sentence Embedding. ICLR, 16.
Birz, G., & Lott, J. R. (2011). The Effect of Macroeconomic News on Stock Returns: New evidence from newspaper coverage. Journal of Banking & Finance, 35(11), 2791–2800.
Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching Word Vectors with Subword Information. TACL 5:135–146
Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: A Library for Support Vector Machines. ACM Transactions on Intelligent Systems and Technology, 2(3), 1–27.
Chen, M.-Y., Liao, C.-H., & Hsieh, R.-P. (2019). Modeling Public Mood and Emotion: Stock Market Trend Prediction with Anticipatory Computing Approach. Computers in Human Behavior, 101, 402–408.
Conneau, A., Kiela, D., Schwenk, H., Barrault, L., & Bordes, A. (2018). Supervised Learning of Universal Sentence Representations from Natural Language Inference Data. EMNLP
Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13(1), 21–27.
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.
Dharmadhikari, S. C., Ingle, M., & Kulkarni, P. (2011). Empirical Studies on Machine Learning Based Text Classification Algorithms. Advanced Computing: An International Journal (ACIJ), 2.
Ding, X., Zhang, Y., Liu, T., & Duan, J. (2015). Deep Learning for Event-Driven Stock Prediction. IJCAI, 2327-2333.
dos Santos Pinheiro, L., & Dras, M. (2017). Stock Market Prediction with Deep Learning: A Character-based Neural Language Model for Event-based Trading. Proceedings of the Australasian Language Technology Association Workshop 2017, 6–15.
Fawcett, T. (2006). Introduction to ROC analysis. Pattern Recognition Letters, 27, 861–874.
Gálvez, R. H., & Gravano, A. (2017). Assessing the Usefulness of Online Message Board Mining in Automatic Stock Prediction Systems. Journal of Computational Science, 19, 43–56.
Guo, J., & Tuckfield, B. (2020). News-based Machine Learning and Deep Learning Methods for Stock Prediction. Journal of Physics: Conference Series, 1642, 012014.
Hill, S., & Ready-Campbell, N. (2011). Expert Stock Picker: The Wisdom of (Experts in) Crowds. International Journal of Electronic Commerce, 15(3), 73–102.
Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735–1780.
Huynh, H. D., Dang, L. M., & Duong, D. (2017). A New Model for Stock Price Movements Prediction Using Deep Neural Network. Proceedings of the Eighth International Symposium on Information and Communication Technology - SoICT 2017, 57–62.
Joachims, T. (1998). Text Categorization with Support Vector Machines: Learning with Many Relevant Features. In C. Nédellec & C. Rouveirol (Eds.), Machine Learning: ECML-98 (pp. 137–142). Springer.
Johnson, R., & Zhang, T. (2015). Effective Use of Word Order for Text Categorization with Convolutional Neural Networks. CoRR
Joshi, K., H. N, B., & Rao, J. (2016). Stock Trend Prediction Using News Sentiment Analysis. International Journal of Computer Science and Information Technology, 8(3), 67–76.
Kilimci, Z. H., & Akyokus, S. (2018). Deep Learning- and Word Embeddings-Based Heterogeneous Classifier Ensembles for Text Classification. Complexity, 2018, 1–10.
Kilimci, Z. H., & Duvar, R. (2020). An Efficient Word Embeddings and Deep Learning Based Model to Forecast the Direction of Stock Exchange Market Using Twitter and Financial News Sites: A Case of Istanbul Stock Exchange (BIST 100). IEEE Access, 8, 188186–188198.
Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1746–1751.
Kowsari, K., Meimandi, K. J., Heidarysafa, M., Mendu, S., Barnes, L. E., & Brown, D. E. (2019). Text Classification Algorithms: A Survey. Information, 10(4), 150.
Kraus, M., & Feuerriegel, S. (2017). Decision Support from Financial Disclosures with Deep Neural Networks and Transfer Learning.
Lai, S., Xu, L., Liu, K., & Zhao, J. (2015). Recurrent Convolutional Neural Networks for Text Classification. AAAI .
Lau, J. H., & Baldwin, T. (2016). An Empirical Evaluation of doc2vec with Practical Insights into Document Embedding Generation. 1st Workshop on Representation Learning for NLP, 78–86
Lavrenko, V., Schmill, M., Lawrie, D., Ogilvie, P., Jensen, D., & Allan, J. (2000). Language Models for Financial News Recommendation. 389–396.
Lawrence, S., Giles, C., Tsoi, A., & Back, A. (1997). Face Recognition: A Convolutional Neural Network Approach. Neural Networks, IEEE Transactions On, 8, 98–113.
Le, Q. V., & Mikolov, T. (2014). Distributed Representations of Sentences and Documents.
Li, X., Li, Y., Yang, H., Yang, L., & Liu, X.-Y. (2019). DP-LSTM: Differential Privacy-inspired LSTM for Stock Prediction Using Financial News.
Lilleberg, J., Zhu, Y., & Zhang, Y. (2015). Support Vector Machines and Word2vec for Text Classification with Semantic Features. 2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC), 136–140.
Long, W., Song, L., & Tian, Y. (2019). A New Graphic Kernel Method of Stock Price Trend Prediction based on Financial News Semantic and Structural Similarity. Expert Systems with Applications, 118, 411–424.
Loughran, T., & Mcdonald, B. (2011). When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10-Ks. The Journal of Finance, 66(1), 35–65.
Luss, R., & D’Aspremont, A. (2012). Predicting Abnormal Returns from News using Text Classification. Quantitative Finance, 15(6), 999–1012.
M, H., E.a., G., Menon, V. K., & K.p., S. (2018). NSE Stock Market Prediction Using Deep-Learning Models. Procedia Computer Science, 132, 1351–1362.
Ma, Y., Zong, L., & Wang, P. (2020). A Novel Distributed Representation of News (DRNews) for Stock Market Predictions. CoRR abs/2005.11706
Marcheggiani, D., & Sebastiani, F. (2017). On the Effects of Low-Quality Training Data on Information Extraction from Clinical Reports. Journal of Data and Information Quality, 9(1), 1–25.
Maron, M. E. (1961). Automatic Indexing: An Experimental Inquiry. Journal of the ACM, 8(3), 404–417.
Melamud, O., Goldberger, J., & Dagan, I. (2016). Context2vec: Learning Generic Context Embedding with Bidirectional LSTM. Proceedings of The 20th SIGNLL Conference on Computational Natural Language Learning, 51–61.
Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed Representations of Words and Phrases and their Compositionality. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, & K. Q. Weinberger (Eds.), Advances in Neural Information Processing Systems 26 (pp. 3111–3119).
Narayan, P. K., & Bannigidadmath, D. (2017). Does Financial News Predict Stock Returns? New Evidence from Islamic and Non-Islamic Stocks. Pacific-Basin Finance Journal, 42, 24–45.
Pagliardini, M., Gupta, P., & Jaggi, M. (2018). Unsupervised Learning of Sentence Embeddings using Compositional n-Gram Features. Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), 528–540.
Peng, Y., & Jiang, H. (2016). Leverage Financial News to Predict Stock Price Movements Using Word Embeddings and Deep Neural Networks. Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 374–379.
Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global Vectors for Word Representation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1532–1543.
Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L. (2018). Deep Contextualized Word Representations. NAACL
Rong, X. (2016). Word2vec Parameter Learning Explained. CoRR abs/1411.2738
Sergei Turukin. (2017). Small Improvements for Big Advancement.
Sezer, O. B., Gudelek, M. U., & Ozbayoglu, A. M. (2019). Financial Time Series Forecasting with Deep Learning: A Systematic Literature Review: 2005-2019.
Sheng, V. S., Provost, F., & Ipeirotis, P. G. (2008). Get Another Label? Improving Data Quality and Data Mining Using Multiple, Noisy Labelers. SIGKDD.
Shi, L., Teng, Z., Wang, L., Zhang, Y., & Binder, A. (2019). DeepClue: Visual Interpretation of Text-Based Deep Stock Prediction. IEEE Transactions on Knowledge and Data Engineering, 31(6), 1094–1108.
Shynkevich, Y., McGinnity, T. M., Coleman, S., Li, Y., & Belatreche, A. (2014). Forecasting Stock Price Directional Movements using Technical Indicators: Investigating Window Size Effects on One-step-ahead Forecasting. Proceedings of the IEEE Conference on Computational Intelligence for Financial Engineering & Economics, 341-348.
Tai, K. S., Socher, R., & Manning, C. D. (2015). Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks. Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), 1556–1566.
Taigman, Y., Yang, M., Ranzato, M., & Wolf, L. (2014). DeepFace: Closing the Gap to Human-Level Performance in Face Verification. 2014 IEEE Conference on Computer Vision and Pattern Recognition, 1701–1708.
Vargas, M. R., de Lima, B. S. L. P., & Evsukoff, A. G. (2017). Deep Learning for Stock Market Prediction from Financial News Articles. 2017 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA), 60–65.
Vargas, M. R., dos Anjos, C. E. M., Bichara, G. L. G., & Evsukoff, A. G. (2018). Deep Leaming for Stock Market Prediction Using Technical Indicators and Financial News Articles. 2018 International Joint Conference on Neural Networks (IJCNN), 1–8.
Vijayarani, D. S., & Ilamathi, J. (2015). Preprocessing Techniques for Text Mining—An Overview. 5, 11.
Wang, F., Shieh, S.-J., Havlin, S., & Stanley, H. E. (2009). Statistical Analysis of the Overnight and Daytime Return. Physical Review E, 79(5), 056109.
Wang, Z., Ma, L., & Zhang, Y. (2016). A Hybrid Document Feature Extraction Method Using Latent Dirichlet Allocation and Word2Vec. 2016 IEEE First International Conference on Data Science in Cyberspace (DSC), 98–103.
Xie, Y. (2017). Stock Market Forecasting Based on Text Mining Technology: A Support Vector Machine Method. Journal of Computers, 500–510.
Xing, F. Z., Cambria, E., & Welsch, R. E. (2018). Natural language based financial forecasting: A survey. Artificial Intelligence Review, 50(1), 49–73.
Zhai, Y., Hsu, A., & Halgamuge, S. K. (2007). Combining News and Technical Indicators in Daily Stock Price Trends Prediction. In D. Liu, S. Fei, Z. Hou, H. Zhang, & C. Sun (Eds.), Advances in Neural Networks – ISNN 2007 (Vol. 4493, pp. 1087–1096). Springer Berlin Heidelberg.
Zhang, L., Aggarwal, C., & Qi, G.-J. (2017). Stock Price Prediction via Discovering Multi-Frequency Trading Patterns. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2141-2149 |