博碩士論文 108423019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:18.227.107.146
姓名 陳瑄(Hsuan Chen)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 應用文字探勘技術於股價預測: 探討傳統機器學習及深度學習技術與不同財經新聞來源之關係
(Text Mining in Stock Prediction by Traditional Machine Learning and Deep Learning Techniques with Different Financial News)
相關論文
★ 單一類別分類方法於不平衡資料集-搭配遺漏值填補和樣本選取方法★ 單分類方法於類別不平衡資料集之研究-結合特徵選取與集成式學習
★ 混合式前處理於類別不平衡問題之研究 - 結合機器學習與生成對抗網路★ 單一與並列式集成特徵選取方法於多分類類別不平衡問題之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-1-1以後開放)
摘要(中) 股價預測不管在財務、經濟或是資訊科技領域都是十分重要的研究議題,但是股價預測受到眾多因素的影響使得難以準確地預測,因此過去許多研究利用歷史股價之關鍵指標或是時間序列模型演算法以預測股價漲跌,近年來也有些研究使用社群媒體或是財經新聞透過文字探勘技術分析文本,並搭配機器學習與深度學習技術提升預測效能。目前現有研究雖有針對傳統的文字特徵表現進行比較,但在新興的自然語言處理技術發展下,較少與傳統常見的技術於股價預測領域進行全面性比較,而過去也較少研究針對不同的財經新聞來源資料進行探討,因此本研究利用財經新聞,比較了上述相關文字技術何種對於股價預測會有較佳之表現以及該技術於機器學習或是深度學習分類器上的影響,亦會針對不同新聞來源是否影響股價預測結果進行探討,並且更進一步地探討在股價預測研究議題上,不同訓練資料量比例對預測效能之影響。
  本研究實驗結果顯示 AUC 表現最佳的實驗組合為(CNN+Word2vec),大部分結果約在 0.53 至 0.56 之間;Apple 公司以新聞來源 Reuters 有較好的表現,代表該新聞對於該公司較能反映出股價漲跌;而 Bank of America 則是以 The Motley Fool 為最佳,因此可以發現 The Motley Fool 在股價預測上也是不錯的新聞來源對象,也從中發現近年來平均股價變化較小的公司比平均股價變化較大的公司在不同新聞來源中均有較好的表現;於不同訓練資料量比例上之實驗結果顯示 AUC 隨著訓練資料量比例的增加,預測效能也有所提高,表現最佳為在訓練資料比例為 70% 或是 50% 時,代表在資料收集的年份上4至6年有不錯的表現。
摘要(英) Stock prediction has long been regarded as a very interesting and important research problem in finance, economic, information technology, etc. To accurately predict stock prices is difficult because there are various factors affecting stock prices. In the past, many studies predicted stock prices through some technical indicators and time series forecasting algorithms. In recent years, some studies utilized financial news to predict the stock trend by text mining and machine learning techniques. Despite many different text feature representation methods being used for stock prediction, there is no a comprehensive study of comparing different kinds of text mining techniques. Therefore, one major research objective of this thesis is to develop effective prediction models with different text representations for performance comparisons. Moreover, the impacts of using different news sources and different ratios of training data on the prediction models are also examined.
The experiment results demonstrate that the combination of deep learning method by CNN with the text representation by Word2vec achieves the best results, and most of the average AUC results are between 0.53 and 0.56. Moreover, the news articles collected from The Motley Fool and Reuters are the better choices to predict stock trends than CNBC. The results show that the company having a smaller level of stock price changes performs better than the company having a larger level of stock price changes. We also find that using the higher training data ratios can produce the higher prediction performance in general. In particular, using either 70% or 50% of the training data in the eight-year duration can make the prediction models reach relatively higher performances.
關鍵字(中) ★ 股價預測
★ 文字探勘
★ 自然語言處理
★ 機器學習
★ 深度學習
關鍵字(英)
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 3
1.3 研究目的 6
1.4 研究架構 7
第二章 文獻探討 8
2.1 文字探勘於股價預測 8
2.2 文字表示 (Text Representation) 9
2.2.1 TF-IDF (Term Frequency-Inverted Document Frequency) 9
2.2.2 Word Embeddings 10
2.2.3 Sentence Embeddings 15
2.3 分類演算法 (Common Classification Algorithms) 18
2.3.1 傳統機器學習演算法 (Machine Learning Algorithms) 18
2.3.2 深度學習演算法 (Deep Learning Algorithms) 21
2.4 股價預測相關之研究 24
第三章 研究方法與實驗設計 29
3.1 實驗概述 (Overview) 29
3.2 實驗一架構 (Study 1) 30
3.2.1 實驗準備 30
3.2.2 實驗資料集 31
3.2.3 資料集切分 34
3.2.4 資料前處理 (Data Preprocessing) 35
3.2.5 特徵表示方法 (Feature Representation) 39
3.2.6 分類器選擇 (Classifiers) 39
3.2.7 衡量指標 (Evaluation Metrics) 42
3.2.8 參數設定 44
3.3 實驗二架構 (Study 2) 45
3.4 實驗三架構 (Study 3) 46
3.4.1 資料集切分 46
第四章 實驗結果 48
4.1 實驗一 48
4.1.1 實驗一結果 48
4.1.2 實驗一小結 58
4.2 實驗二 61
4.2.1 實驗二結果 62
4.2.2 實驗二小結 63
4.3 實驗三 69
4.3.1 實驗三結果 69
4.3.2 實驗三小結 72
4.4 實驗總結 73
第五章 結論 74
5.1 總結與貢獻 74
5.2 研究限制 75
5.3 未來研究方向與建議 76
參考文獻 77
參考文獻 Alanyali, M., Moat, H. S., & Preis, T. (2013). Quantifying the Relationship Between Financial News and the Stock Market. Scientific Reports, 3(1), 3578.
Arora, S., Liang, Y., & Ma, T. (2017). A Simple but Tough-to-beat Baseline for Sentence Embedding. ICLR, 16.
Birz, G., & Lott, J. R. (2011). The Effect of Macroeconomic News on Stock Returns: New evidence from newspaper coverage. Journal of Banking & Finance, 35(11), 2791–2800.
Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching Word Vectors with Subword Information. TACL 5:135–146
Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: A Library for Support Vector Machines. ACM Transactions on Intelligent Systems and Technology, 2(3), 1–27.
Chen, M.-Y., Liao, C.-H., & Hsieh, R.-P. (2019). Modeling Public Mood and Emotion: Stock Market Trend Prediction with Anticipatory Computing Approach. Computers in Human Behavior, 101, 402–408.
Conneau, A., Kiela, D., Schwenk, H., Barrault, L., & Bordes, A. (2018). Supervised Learning of Universal Sentence Representations from Natural Language Inference Data. EMNLP
Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13(1), 21–27.
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.
Dharmadhikari, S. C., Ingle, M., & Kulkarni, P. (2011). Empirical Studies on Machine Learning Based Text Classification Algorithms. Advanced Computing: An International Journal (ACIJ), 2.
Ding, X., Zhang, Y., Liu, T., & Duan, J. (2015). Deep Learning for Event-Driven Stock Prediction. IJCAI, 2327-2333.
dos Santos Pinheiro, L., & Dras, M. (2017). Stock Market Prediction with Deep Learning: A Character-based Neural Language Model for Event-based Trading. Proceedings of the Australasian Language Technology Association Workshop 2017, 6–15.
Fawcett, T. (2006). Introduction to ROC analysis. Pattern Recognition Letters, 27, 861–874.
Gálvez, R. H., & Gravano, A. (2017). Assessing the Usefulness of Online Message Board Mining in Automatic Stock Prediction Systems. Journal of Computational Science, 19, 43–56.
Guo, J., & Tuckfield, B. (2020). News-based Machine Learning and Deep Learning Methods for Stock Prediction. Journal of Physics: Conference Series, 1642, 012014.
Hill, S., & Ready-Campbell, N. (2011). Expert Stock Picker: The Wisdom of (Experts in) Crowds. International Journal of Electronic Commerce, 15(3), 73–102.
Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735–1780.
Huynh, H. D., Dang, L. M., & Duong, D. (2017). A New Model for Stock Price Movements Prediction Using Deep Neural Network. Proceedings of the Eighth International Symposium on Information and Communication Technology - SoICT 2017, 57–62.
Joachims, T. (1998). Text Categorization with Support Vector Machines: Learning with Many Relevant Features. In C. Nédellec & C. Rouveirol (Eds.), Machine Learning: ECML-98 (pp. 137–142). Springer.
Johnson, R., & Zhang, T. (2015). Effective Use of Word Order for Text Categorization with Convolutional Neural Networks. CoRR
Joshi, K., H. N, B., & Rao, J. (2016). Stock Trend Prediction Using News Sentiment Analysis. International Journal of Computer Science and Information Technology, 8(3), 67–76.
Kilimci, Z. H., & Akyokus, S. (2018). Deep Learning- and Word Embeddings-Based Heterogeneous Classifier Ensembles for Text Classification. Complexity, 2018, 1–10.
Kilimci, Z. H., & Duvar, R. (2020). An Efficient Word Embeddings and Deep Learning Based Model to Forecast the Direction of Stock Exchange Market Using Twitter and Financial News Sites: A Case of Istanbul Stock Exchange (BIST 100). IEEE Access, 8, 188186–188198.
Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1746–1751.
Kowsari, K., Meimandi, K. J., Heidarysafa, M., Mendu, S., Barnes, L. E., & Brown, D. E. (2019). Text Classification Algorithms: A Survey. Information, 10(4), 150.
Kraus, M., & Feuerriegel, S. (2017). Decision Support from Financial Disclosures with Deep Neural Networks and Transfer Learning.
Lai, S., Xu, L., Liu, K., & Zhao, J. (2015). Recurrent Convolutional Neural Networks for Text Classification. AAAI .
Lau, J. H., & Baldwin, T. (2016). An Empirical Evaluation of doc2vec with Practical Insights into Document Embedding Generation. 1st Workshop on Representation Learning for NLP, 78–86
Lavrenko, V., Schmill, M., Lawrie, D., Ogilvie, P., Jensen, D., & Allan, J. (2000). Language Models for Financial News Recommendation. 389–396.
Lawrence, S., Giles, C., Tsoi, A., & Back, A. (1997). Face Recognition: A Convolutional Neural Network Approach. Neural Networks, IEEE Transactions On, 8, 98–113.
Le, Q. V., & Mikolov, T. (2014). Distributed Representations of Sentences and Documents.
Li, X., Li, Y., Yang, H., Yang, L., & Liu, X.-Y. (2019). DP-LSTM: Differential Privacy-inspired LSTM for Stock Prediction Using Financial News.
Lilleberg, J., Zhu, Y., & Zhang, Y. (2015). Support Vector Machines and Word2vec for Text Classification with Semantic Features. 2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC), 136–140.
Long, W., Song, L., & Tian, Y. (2019). A New Graphic Kernel Method of Stock Price Trend Prediction based on Financial News Semantic and Structural Similarity. Expert Systems with Applications, 118, 411–424.
Loughran, T., & Mcdonald, B. (2011). When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10-Ks. The Journal of Finance, 66(1), 35–65.
Luss, R., & D’Aspremont, A. (2012). Predicting Abnormal Returns from News using Text Classification. Quantitative Finance, 15(6), 999–1012.
M, H., E.a., G., Menon, V. K., & K.p., S. (2018). NSE Stock Market Prediction Using Deep-Learning Models. Procedia Computer Science, 132, 1351–1362.
Ma, Y., Zong, L., & Wang, P. (2020). A Novel Distributed Representation of News (DRNews) for Stock Market Predictions. CoRR abs/2005.11706
Marcheggiani, D., & Sebastiani, F. (2017). On the Effects of Low-Quality Training Data on Information Extraction from Clinical Reports. Journal of Data and Information Quality, 9(1), 1–25.
Maron, M. E. (1961). Automatic Indexing: An Experimental Inquiry. Journal of the ACM, 8(3), 404–417.
Melamud, O., Goldberger, J., & Dagan, I. (2016). Context2vec: Learning Generic Context Embedding with Bidirectional LSTM. Proceedings of The 20th SIGNLL Conference on Computational Natural Language Learning, 51–61.
Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed Representations of Words and Phrases and their Compositionality. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, & K. Q. Weinberger (Eds.), Advances in Neural Information Processing Systems 26 (pp. 3111–3119).
Narayan, P. K., & Bannigidadmath, D. (2017). Does Financial News Predict Stock Returns? New Evidence from Islamic and Non-Islamic Stocks. Pacific-Basin Finance Journal, 42, 24–45.
Pagliardini, M., Gupta, P., & Jaggi, M. (2018). Unsupervised Learning of Sentence Embeddings using Compositional n-Gram Features. Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), 528–540.
Peng, Y., & Jiang, H. (2016). Leverage Financial News to Predict Stock Price Movements Using Word Embeddings and Deep Neural Networks. Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 374–379.
Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global Vectors for Word Representation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1532–1543.
Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L. (2018). Deep Contextualized Word Representations. NAACL
Rong, X. (2016). Word2vec Parameter Learning Explained. CoRR abs/1411.2738
Sergei Turukin. (2017). Small Improvements for Big Advancement.
Sezer, O. B., Gudelek, M. U., & Ozbayoglu, A. M. (2019). Financial Time Series Forecasting with Deep Learning: A Systematic Literature Review: 2005-2019.
Sheng, V. S., Provost, F., & Ipeirotis, P. G. (2008). Get Another Label? Improving Data Quality and Data Mining Using Multiple, Noisy Labelers. SIGKDD.
Shi, L., Teng, Z., Wang, L., Zhang, Y., & Binder, A. (2019). DeepClue: Visual Interpretation of Text-Based Deep Stock Prediction. IEEE Transactions on Knowledge and Data Engineering, 31(6), 1094–1108.
Shynkevich, Y., McGinnity, T. M., Coleman, S., Li, Y., & Belatreche, A. (2014). Forecasting Stock Price Directional Movements using Technical Indicators: Investigating Window Size Effects on One-step-ahead Forecasting. Proceedings of the IEEE Conference on Computational Intelligence for Financial Engineering & Economics, 341-348.
Tai, K. S., Socher, R., & Manning, C. D. (2015). Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks. Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), 1556–1566.
Taigman, Y., Yang, M., Ranzato, M., & Wolf, L. (2014). DeepFace: Closing the Gap to Human-Level Performance in Face Verification. 2014 IEEE Conference on Computer Vision and Pattern Recognition, 1701–1708.
Vargas, M. R., de Lima, B. S. L. P., & Evsukoff, A. G. (2017). Deep Learning for Stock Market Prediction from Financial News Articles. 2017 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA), 60–65.
Vargas, M. R., dos Anjos, C. E. M., Bichara, G. L. G., & Evsukoff, A. G. (2018). Deep Leaming for Stock Market Prediction Using Technical Indicators and Financial News Articles. 2018 International Joint Conference on Neural Networks (IJCNN), 1–8.
Vijayarani, D. S., & Ilamathi, J. (2015). Preprocessing Techniques for Text Mining—An Overview. 5, 11.
Wang, F., Shieh, S.-J., Havlin, S., & Stanley, H. E. (2009). Statistical Analysis of the Overnight and Daytime Return. Physical Review E, 79(5), 056109.
Wang, Z., Ma, L., & Zhang, Y. (2016). A Hybrid Document Feature Extraction Method Using Latent Dirichlet Allocation and Word2Vec. 2016 IEEE First International Conference on Data Science in Cyberspace (DSC), 98–103.
Xie, Y. (2017). Stock Market Forecasting Based on Text Mining Technology: A Support Vector Machine Method. Journal of Computers, 500–510.
Xing, F. Z., Cambria, E., & Welsch, R. E. (2018). Natural language based financial forecasting: A survey. Artificial Intelligence Review, 50(1), 49–73.
Zhai, Y., Hsu, A., & Halgamuge, S. K. (2007). Combining News and Technical Indicators in Daily Stock Price Trends Prediction. In D. Liu, S. Fei, Z. Hou, H. Zhang, & C. Sun (Eds.), Advances in Neural Networks – ISNN 2007 (Vol. 4493, pp. 1087–1096). Springer Berlin Heidelberg.
Zhang, L., Aggarwal, C., & Qi, G.-J. (2017). Stock Price Prediction via Discovering Multi-Frequency Trading Patterns. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2141-2149
指導教授 蔡志豐 蘇坤良 審核日期 2021-7-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明