參考文獻 |
Antoniou, A., Storkey, A., Edwards, H., 2018. Data Augmentation Generative Adversarial Networks. ArXiv171104340 Cs Stat.
Bahdanau, D., Brakel, P., Xu, K., Goyal, A., Lowe, R., Pineau, J., Courville, A., Bengio, Y., 2017. An Actor-Critic Algorithm for Sequence Prediction. In Conference ICLR.
Bowman, S.R., Vilnis, L., Vinyals, O., Dai, A.M., Jozefowicz, R., Bengio, S., 2016. Generating Sentences from a Continuous Space. In 20th SIGNLL Conference on Computational Natural Language Learning, CoNLL 2016 (pp. 10-21). Association for Computational Linguistics (ACL).
Chen, H., Liu, X., Yin, D., Tang, J., 2017. A Survey on Dialogue Systems: Recent Advances and New Frontiers. ACM SIGKDD Explor. Newsl. 19, 25–35. https://doi.org/10.1145/3166054.3166058
Chen, L., Zhang, G., Zhou, E., n.d. Fast Greedy MAP Inference for Determinantal Point Process to Improve Recommendation Diversity. In Proceedings of the 32nd International Conference on Neural Information Processing Systems (pp. 5627-5638).
Cho, S., Lebanoff, L., Foroosh, H., Liu, F., 2019a. Improving the Similarity Measure of Determinantal Point Processes for Extractive Multi-Document Summarization, in: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Presented at the Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, Florence, Italy, pp. 1027–1038. https://doi.org/10.18653/v1/P19-1098
Cho, S., Li, C., Yu, D., Foroosh, H., Liu, F., 2019b. Multi-Document Summarization with Determinantal Point Processes and Contextualized Representations, in: Proceedings of the 2nd Workshop on New Frontiers in Summarization. Presented at the Proceedings of the 2nd Workshop on New Frontiers in Summarization, Association for Computational Linguistics, Hong Kong, China, pp. 98–103. https://doi.org/10.18653/v1/D19-5412
Elfeki, M., Couprie, C., Riviere, M., Elhoseiny, M., 2019. GDPP: Learning Diverse Generations Using Determinantal Point Process. In ICML.
Finn, C., Levine, S., Abbeel, P., 2016. Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization. In International conference on machine learning (pp. 49-58). PMLR.
Galley, M., Brockett, C., Sordoni, A., Ji, Y., Auli, M., Quirk, C., Mitchell, M., Gao, J., Dolan, B., 2015. deltaBLEU: A Discriminative Metric for Generation Tasks with Intrinsically Diverse Targets, in: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers). Presented at the Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), Association for Computational Linguistics, Beijing, China, pp. 445–450. https://doi.org/10.3115/v1/P15-2073
Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y., 2014. Generative Adversarial Networks. Communications of the ACM, 63(11), 139-144.
Guo, J., Lu, S., Cai, H., Zhang, W., Yu, Y., Wang, J., 2017. Long Text Generation via Adversarial Training with Leaked Information. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1).
Hinton, G.E., 2006. Reducing the Dimensionality of Data with Neural Networks. Science 313, 504–507. https://doi.org/10.1126/science.1127647
Hu, Z., Tan, B., Salakhutdinov, R., Mitchell, T., Xing, E.P., 2019. Learning Data Manipulation for Augmentation and Weighting. Advances in Neural Information Processing Systems, 32, 15764-15775.
Kingma, D.P., Welling, M., 2014. Auto-Encoding Variational Bayes. ArXiv13126114 Cs Stat.
Ko, H., Lee, Junhyuk, Kim, J., Lee, Jongwuk, Shim, H., 2020. Diversity regularized autoencoders for text generation, in: Proceedings of the 35th Annual ACM Symposium on Applied Computing. Presented at the SAC ’20: The 35th ACM/SIGAPP Symposium on Applied Computing, ACM, Brno Czech Republic, pp. 883–891. https://doi.org/10.1145/3341105.3373998
Kulesza, A., Taskar, B., 2012. Determinantal point processes for machine learning. Found. Trends® Mach. Learn. 5, 123–286. https://doi.org/10.1561/2200000044
Kulesza, A., Taskar, B., 2011. k-DPPs: Fixed-Size Determinantal Point Processes. In ICML.
Kumar, V., Choudhary, A., Cho, E., 2021. Data Augmentation using Pre-trained Transformer Models. In Proceedings of the 2nd Workshop on Life-long Learning for Spoken Language Systems (pp. 18-26).
Li, J., Galley, M., Brockett, C., Gao, J., Dolan, B., 2016. A Diversity-Promoting Objective Function for Neural Conversation Models, in: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Presented at the NAACL-HLT 2016, Association for Computational Linguistics, San Diego, California, pp. 110–119. https://doi.org/10.18653/v1/N16-1014
Lin, K., Li, D., He, X., Zhang, Z., Sun, M.-T., 2018. Adversarial Ranking for Language Generation. In NIPS.
Liu, C.-W., Lowe, R., Serban, I.V., Noseworthy, M., Charlin, L., Pineau, J., 2016. How NOT To Evaluate Your Dialogue System: An Empirical Study of Unsupervised Evaluation Metrics for Dialogue Response Generation. In EMNLP.
M, H., M.N, S., 2015. A Review on Evaluation Metrics for Data Classification Evaluations. Int. J. Data Min. Knowl. Manag. Process 5, 01–11. https://doi.org/10.5121/ijdkp.2015.5201
Malandrakis, N., Shen, M., Goyal, A., Gao, S., Sethi, A., Metallinou, A., 2019. Controlled Text Generation for Data Augmentation in Intelligent Artificial Agents. In Proceedings of the 3rd Workshop on Neural Generation and Translation (pp. 90-98).
Miller, G.A., 1995. WordNet: a lexical database for English. Commun. ACM 38, 39–41. https://doi.org/10.1145/219717.219748
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., 2018. Language Models are Unsupervised Multitask Learners 24.
Semeniuta, S., Severyn, A., Barth, E., 2017. A Hybrid Convolutional Variational Autoencoder for Text Generation. In EMNLP.
Sennrich, R., Haddow, B., Birch, A., 2016. Improving Neural Machine Translation Models with Monolingual Data, in: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Presented at the ACL 2016, Association for Computational Linguistics, Berlin, Germany, pp. 86–96. https://doi.org/10.18653/v1/P16-1009
Shao, Z., Huang, M., Wen, J., Xu, W., Zhu, X., 2019. Long and Diverse Text Generation with Planning-based Hierarchical Variational Model. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (pp. 3257-3268).
Shi, Z., Chen, X., Qiu, X., Huang, X., 2018. Toward Diverse Text Generation with Inverse Reinforcement Learning, in: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. Presented at the Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}, International Joint Conferences on Artificial Intelligence Organization, Stockholm, Sweden, pp. 4361–4367. https://doi.org/10.24963/ijcai.2018/606
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I., 2017. Attention Is All You Need. In Proceedings of the 31st International Conference on Neural Information Processing Systems (pp. 6000-6010).
Wei, J., Zou, K., 2019. EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (pp. 6382-6388).
Wen, T.-H., Gasic, M., Mrksic, N., Su, P.-H., Vandyke, D., Young, S., 2015. Semantically Conditioned LSTM-based Natural Language Generation for Spoken Dialogue Systems. In Conference Proceedings-EMNLP 2015: Conference on Empirical Methods in Natural Language Processing (pp. 1711-1721).
Xu, J., Ren, X., Lin, J., Sun, X., 2018. DP-GAN: Diversity-Promoting Generative Adversarial Network for Generating Informative and Diversified Text. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (pp. 3940-3949).
Yu, L., Zhang, W., Wang, J., Yu, Y., 2017. SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient. In Proceedings of the AAAI conference on artificial intelligence (Vol. 31, No. 1).
Zhang, C., Kjellstrom, H., Mandt, S., 2017a. Determinantal Point Processes for Mini-Batch Diversification. In 33rd Conference on Uncertainty in Artificial Intelligence, UAI 2017, Sydney, Australia, 11 August 2017 through 15 August 2017. AUAI Press Corvallis.
Zhang, D., Li, T., Zhang, H., Yin, B., 2020. On Data Augmentation for Extreme Multi-label Classification. ArXiv200910778 Cs.
Zhang, X., Wang, Z., Liu, D., Ling, Q., 2018. DADA: Deep Adversarial Data Augmentation for Extremely Low Data Regime Classification. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 2807-2811). IEEE.
Ziebart, B.D., Maas, A., Bagnell, J.A., Dey, A.K., 2008. Maximum Entropy Inverse Reinforcement Learning. In Aaai (Vol. 8, pp. 1433-1438). |