參考文獻 |
[1] Amihud, Y. (2002). Illiquidity and stock returns: cross-section and time-series effects. Journal of Financial Markets 5, 31-56.
[2] Ang, A., Hodrick, R. J., Xing, Y., & Zhang, X. (2006). The cross‐section of volatility and expected returns. Journal of Finance 61(1), 259-299.
[3] Areal, N. M., & Taylor, S. J. (2002). The realized volatility of FTSE‐100 futures prices. Journal of Futures Markets 22(7), 627-648.
[4] Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A., & Shephard, N. (2009). Realized kernels in practice: trades and quotes. Econometrics Journal 12, 1-33.
[5] Barndorff-Nielsen, O. E., & Shephard, N. (2006). Econometrics of testing for jumps in financial economics using bipower variation. Journal of Financial Econometrics 4, 1-30.
[6] Becker, J., Hollstein, F., Prokopczuk, M., & Sibbertsen, P. (2020). The Memory of Beta Factors. Mimeo, Leibniz University Hannover, Germany.
[7] Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31(3), 307-327.
[8] Cheung, Y.-W. & Lai, K. S. (1995). A search for long memory in international stock market returns. Journal of International Money and Finance 14(4), 597-615.
[9] Corsi, F. (2009). A simple approximate long-memory model of realized volatility. Journal of Financial Econometrics 7, 174-196.
[10] Cremers, M., Halling, M., & Weinbaum, D. (2015). Aggregate jump and volatility risk in the cross-section of stock returns. Journal of Finance 70, 577-614.
[11] Fama, E. F., & French, K. R. (1992). The cross-section of expected stock returns. Journal of Finance 47, 427-465.
[12] Fama, E. F., & French, K. R. (1993). Common risk factors in the returns on stocks and bonds. Journal of Financial Economics 33, 3-56.
[13] Fama, E. F., & French, K. R. (2008). Dissecting anomalies. Journal of Finance 63, 1653-1678.
[14] Fama, E. F., & French, K. R. (2015). A five-factor asset pricing model. Journal of Financial Economics 116, 1-22.
[15] Fama, E. F., & MacBeth, J. D. (1973). Risk, return, and equilibrium: empirical tests. Journal of Political Economy 81, 607-636.
[16] Geweke, J., & Porter-Hudak, S. (1983). The estimation and application of long memory time series models. Journal of Time Series Analysis 4, 221-238.
[17] Jegadeesh, N. (1990). Evidence of predictable behavior of security returns. Journal of Finance 45, 881-898.
[18] Jegadeesh, N., & Titman, S. (1993). Returns to buying winners and selling losers: Implications for stock market efficiency. Journal of Finance 48, 65-91.
[19] Jiang, G. J., & Oomen, R. C. (2008). Testing for jumps when asset prices are observed with noise: a swap variance approach. Journal of Econometrics 144, 352-370.
[20] Jiang, G. J., & Yao, T. (2013). Stock price jumps and cross-sectional return predictability. Journal of Financial and Quantitative Analysis 48, 1519-1544.
[21] Jubinski, D. (2005). Observable firm characteristics and individual equity volatility persistence. Mimeo, Saint Joseph’s University, United States.
[22] Kasman, A., Kasman, S., & Torun, E. (2009). Dual long memory property in returns and volatility: Evidence from the CEE countries′ stock markets. Emerging Markets Review 10, 122-139.
[23] Kelly, B., & Jiang, H. (2014). Tail risk and asset prices. Review of Financial Studies 27, 2841-2871.
[24] Lobato, I. N., & Savin, N. E. (1998). Real and spurious long-memory properties of stock-market data. Journal of Business & Economic Statistics 16, 261-268.
[25] Mandelbrot, B. (1967). The variation of some other speculative prices. Journal of Business 40, 393-413.
[26] Nguyen, D. B. B., Prokopczuk, M., & Sibbertsen, P. (2020). The memory of stock return volatility: Asset pricing implications. Journal of Financial Markets 47, 100487.
[27] Parkinson, M. (1980). The extreme value method for estimating the variance of the rate of return. Journal of Business 53, 61-65.
[28] Sadique, S., & Silvapulle, P. (2001). Long‐term memory in stock market returns: International evidence. International Journal of Finance & Economics 6, 59-67.
[29] Turkyilmaz, S. & Balibey, M. (2014). Long memory behavior in the returns of Pakistan stock market: ARFIMA-FIGARCH models. International Journal of Economics and Financial Issues 4, 400.
[30] 龐淑娟、劉向麗與汪壽陽 (2011),「中國期貨市場高頻波動率的長記憶性」,系統工程理論與實踐,31,1039-1044。
[31] 施紅俊、馬玉林與陳偉忠 (2004),「中國股市長記憶性實証研究」,同濟大學學報(自然科學版),32,416-420.
[32] 陳鈺雯 (2011),Firm Attributes and Long Memory in Volatility,中央大學財務金融學系碩士學位論文。
[33] 葉宗穎 (2000),國際資本資產定價模型:多變量FIGARCH-in-Mean模型的應用,國立臺灣大學經濟學系碩士學位論文。 |