博碩士論文 108426026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.145.75.49
姓名 李芸(Yun Lee)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 太陽能板回收之成本效益分析
(Cost-Benefit Analysis of Waste Photovoltaic Module Recycling)
相關論文
★ 半導體化學材料銷售策略分析-以跨國B化工公司為例★ TFT-LCD CELL製程P檢點燈不良解析流程改善之關聯法則應用
★ 金融風暴時期因應長鞭效應的策略 –以X公司為例★ 勞動生產力目標訂定之研究-DEA 資料包絡法應用
★ 應用田口方法導入低溫超薄ITO透明導電膜於電容式觸控面板之研究★ 多階不等效平行機台排程與訂單決策
★ 多準則決策之應用-以雷射半導體產業為例★ 專案管理模式進行品管圈活動-以半導體機台保養測機流程改善為例
★ 應用e8D降低不合格品之效益分析-以快速消費品製造為例★ 供應商評選模式之建構-以塑膠射出成型機製造為例
★ 應用協同規劃預測補貨於伺服器備品存貨改善之研究-以Q代工公司為例★ 船用五金拋光作業之生產規劃
★ 以SCOR模型探討汽車安全輔助系統供應鏈-以A公司採購作業改善為例★ 研發補助計畫執行成效評估之研究以「工業基礎技術專案計畫」為例
★ 運用生態效益發展永續之耳機產業★ 失效模式設計審查(DRBFM)之應用-以筆記型電腦為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 過去人類著重於經濟上的發展,大量燃燒化石燃料、過度開墾樹林及工業的大量拓展,導致溫室氣體濃度逐漸上升,人類面臨了全球暖化帶來的危害。為解決此一問題,各國制定了相關協議,期望能於經濟、環境、社會三構面達成平衡,以永續發展作為最大目標。為降低二氧化碳的排放,使用再生能源取代原有電力來源成了一有效方法,其中又以太陽能為發展主力,由於其取之不盡用之不竭、只要照得到陽光皆可隨處裝設等優勢及便利性,使其成長及裝置量大幅領先其它再生能源。隨著太陽能產業的快速發展,損壞或廢棄的太陽能板該如何處置成為一大隱憂,若未妥善處理,將產生大量廢棄物,且太陽能電池亦可能破裂導致環境汙染。太陽能板平均使用年限為20年,過去因著政府推動,國內裝設量逐年增加,將來勢必出現大量廢棄太陽能板,然而當前台灣於太陽能板回收政策的制定才剛起步,且尚未設立獨立處理廠,導致回收方式僅以機械粉碎方法處理,降低其中貴重金屬的回收價值與資源浪費。
基於上述因素,本研究以台灣地區太陽能板回收流程作為研究範圍,並將著重於獨立太陽能板回收處理廠的設立,透過成本效益分析方法,列出相關成本及效益項目,評估其經濟可行性,鼓勵企業廠商的投入。研究結果顯示,太陽能板回收處理之單位回收成本為25,095元/公噸,單位回收效益為29,533元/公噸,單位淨效益為4,438元/公噸;以經濟角度分析,淨現值(NPV)為246,262,361元,益本比(BCR)為1.07。該結果表明,儘管設立太陽能板處理廠有其效益,然而若要讓企業保持正常運作,須提升政府預收費用占比0.1%,方能使益本比達預期標準。此研究結果鼓勵企業及政府可投入處理廠的建置,讓太陽能板產業達到真正的永續經營。
摘要(英) In the past, human beings focused on economic development, burning fossil fuels, over-cultivated forests, and large-scale industrial expansion, leading to a gradual increase in the concentration of greenhouse gases, and human beings are facing the harm caused by global warming. In order to solve this problem, various countries have formulated relevant agreements to achieve a balance between the three dimensions of economy, environment and society, with sustainable development as the biggest goal. In order to reduce carbon dioxide emissions, the use of renewable energy to replace the original source of electricity has become an effective method. Among them, solar energy is the main development force. Because of its inexhaustible availability, it can be installed anywhere as long as the sun is available. And convenience, so that its growth and installation volume are significantly ahead of other renewable energy sources. With the rapid development of the solar energy industry, how to dispose of damaged or abandoned solar panels has become a major concern. If not properly disposed of, a large amount of waste will be generated, and solar cells may also rupture and cause pollution. The average service life of solar panels is 20 years. In the past, due to the government′s promotion, domestic installations have increased year by year. In the future, a large number of waste solar panels will inevitably appear. However, the formulation of solar panel recycling policies in Taiwan has just started and no independent treatment plant has been established yet. As a result, the current recycling method only uses pulverization, which reduces the recycling value of precious metals and waste of resources.
Based on the above factors, this study takes the solar panel recycling process in Taiwan as the research scope, and will focus on independent solar panel recycling and processing plants. Through cost-benefit analysis methods, the economic feasibility will be evaluated and the investment of enterprises and manufacturers will be encouraged. The research results show that the unit recovery cost of solar panel recycling is NTD 25,095 per ton, the unit recovery benefit is NTD 29,533 per ton, and the unit net benefit is NTD 4,438 per ton. From an economic point of view, the net present value (NPV) is NTD 246,262,361. The benefit cost ratio (BCR) is 1.07. The result shows that, despite its benefits, if the company is to maintain normal operations, the government’s pre-charge ratio must be increased by 0.1% to make the benefit cost ratio reach the expected standard. The results of this study encourage companies and governments to invest in the construction of treatment plants, so that the solar panel industry can achieve a truly sustainable operation.
關鍵字(中) ★ 永續發展
★ 太陽能模組
★ 經濟可行性
★ 成本效益分析
★ 回收流程
關鍵字(英) ★ Sustainable development
★ Photovoltaic module
★ Economic feasibility
★ Cost–benefit analysis
★ Recovery process
論文目次 摘要 i
Abstract ii
目錄 iv
圖目錄 vi
表目錄 vii
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 3
1.3 論文架構 4
第二章 研究問題 5
2.1 全球暖化(Global Warming) 5
2.2 太陽能光電(Photovoltaic) 7
2.3 研究動機 11
2.4 研究問題 13
第三章 文獻探討 15
3.1 永續發展(Sustainable Development) 15
3.2 太陽能光電(Photovoltaic) 18
3.3 廢棄太陽能板 22
3.4 成本效益分析 25
第四章 研究方法 29
4.1 成本效益分析 29
4.2 研究假設 30
4.3 成本評估項目 30
4.4 效益評估項目 32
第五章 研究結果 33
5.1 參數設定 33
5.2 結果分析 38
第六章 結論 44
6.1 研究總結 44
6.2 後續工作 45
參考文獻 46
附錄1 52
附錄2 53
附錄3 54
參考文獻 中文文獻
[1] 中華民國統計資訊網(2021)。薪資及生產力統計。網站:https://www.stat.gov.tw/lp.asp?CtNode=527&CtUnit=1818&BaseDSD=29&mp=4 (上網時間: 2021年5月2日)。
[2] 王啟秀、孔祥科、左玉婷 (2008)。全球能源產業趨勢研究——以台灣太陽能光電產業為例。中華管理評論。網站:
http://cmr.ba.ouhk.edu.hk/cmr/webjournal/v11n3/CMR160C07.pdf (上網日期:2020年11月25日)。
[3] 行政院環境保護署(2020)。廢太陽能光電板回收處理規劃說明。網站: https://hwms.epa.gov.tw/dispPageBox/pubweb/pubwebCP.aspx?ddsPageID=INFORMATION&dbid=4593718174 (上網日期:2020年11月25日)。
[4] 林祥輝(2016)。日本再生能源特別措施(FIT)法修正案。工業技術研究院。網站: https://km.twenergy.org.tw/ReadFile/?p=Reference&n=201611291726.pdf (上網時間: 2020年12月11日)。
[5] 吳曜杉(2019)。太陽光電模組回收技術概述。工業技術研究院。網站: https://km.twenergy.org.tw/ReadFile/?p=KLBase&n=2019314171956.pdf (上網時間: 2020年11月28日)。
[6] 張四明(2001)。成本效益分析在政府決策上的應用與限制。行政暨政策學報,第三期,45-80。
[7] 產業價值鏈資訊平台 (2020)。太陽能產業產業鏈簡介。網站:
https://ic.tpex.org.tw/introduce.php?ic=A100 (上網日期:2020年11月25日)。
[8] 郭昱瑩(2005)。決策幫手-成本效益分析之概論與實務。T&D 飛訊,124,1-18。網站: https://sites.duke.edu/niou/files/2011/06/9402101.pdf (上網日期:2020年3月5日)
[9] 經濟部能源局 (2015)。太陽光電2年推動計畫。網站:
https://www.moeaboe.gov.tw/ECW/populace/content/ContentLink2.aspx?menu_id=48&sub_menu_id=8750 (上網日期:2020年11月25日)。
[10] 經濟部能源局(2021)。能源統計月報-再生能源裝置容量(歷年)。網站:https://www.moeaboe.gov.tw/ECW/populace/content/SubMenu.aspx?menu_id=6977 (上網時間: 2021年4月25日)。
[11] 顏文治 (2013)。太陽光電發電系統發電效益分析與保養維護說明。網站:
https://www.tgpf.org.tw/event/2013110102.htm (上網日期:2020年11月25日)。
英文文獻
[12] Achillas, C., Aidonis, D., Vlachokostas, C., Karagiannidis, A., Moussiopoulos, N., & Loulos, V. (2013). Depth of manual dismantling analysis: A cost–benefit approach. Waste Management, 33(4), 948–956.
[13] Amartya, S. (2000). The Discipline of Cost‐Benefit Analysis. The Journal of Legal Studies, 29(S2), 931–952.
[14] Ardente, F., Latunussa, C.E.L., Blengini, G.A. (2019). Resource efficient recovery of critical and precious metals from waste silicon PV panel recycling. Waste Management, 91, 156–167.
[15] Chowdhury, M. S., Rahman, K. S., Chowdhury, T., Nuthammachot, N., Techato, K., Akhtaruzzaman, M., Amin, N. (2020). An overview of solar photovoltaic panels’ end-of-life material recycling. Energy Strategy Reviews, 27, 100431.
[16] Choi, J.-K., & Fthenakis, V. (2010). Design and Optimization of Photovoltaics Recycling Infrastructure. Environmental Science & Technology, 44(22), 8678–8683.
[17] Cobbinah, P. B., Erdiaw-Kwasie, M. O., & Amoateng, P. (2015). Africa’s urbanisation: Implications for sustainable development. Cities, 47, 62–72.
[18] Dewit, A., Shaw, R., & Djalante, R. (2020). An integrated approach to sustainable development, National Resilience, and COVID-19 responses: The case of Japan. International Journal of Disaster Risk Reduction, 51, 101808.
[19] Djukic, M., Jovanoski, I., Ivanovic, O. M., Lazic, M., & Bodroza, D. (2016). Cost-benefit analysis of an infrastructure project and a cost-reflective tariff: A case study for investment in wastewater treatment plant in Serbia. Renewable and Sustainable Energy Reviews, 59, 1419–1425.
[20] Doi, T., Tsuda, I., Unagida, H., Murata, A., Sakuta, K., & Kurokawa, K. (2001). Experimental study on PV module recycling with organic solvent method. Solar Energy Materials and Solar Cells, 67(1-4), 397–403.
[21] Domínguez, A., Geyer, R. (2019). Photovoltaic waste assessment of major photovoltaic installations in the United States of America. Renewable Energy, 133, 1188–1200.
[22] Farel, R., Yannou, B., Ghaffari, A., & Leroy, Y. (2013). A cost and benefit analysis of future end-of-life vehicle glazing recycling in France: A systematic approach. Resources, Conservation and Recycling, 74, 54–65.
[23] Fiandra, V., Sannino, L., Andreozzi, C., Corcelli, F., & Graditi, G. (2019). Silicon photovoltaic modules at end-of-life: Removal of polymeric layers and separation of materials. Waste Management, 87, 97–107.
[24] Hsu, E. (2020). Cost-benefit analysis for recycling of agricultural wastes in Taiwan. Waste Management, 120, 424–432.
[25] Huang, W.-H., Shin, W. J., Wang, L., Sun, W.-C., & Tao, M. (2017). Strategy and technology to recycle wafer-silicon solar modules. Solar Energy, 144, 22–31.
[26] Intergovernmental Panel on Climate Change (IPCC). (2014). Climate Change 2014: Synthesis Report. Retrieved from https://www.ipcc.ch/report/ar5/syr/ (accessed Nov. 17, 2020).
[27] International Energy Agency (IEA). (2017). World Energy Outlook 2017 Executive Summary. Retrieved from https://www.iea.org/reports/world-energy-outlook-2017 (accessed Dec. 2, 2020).
[28] International Renewable Energy Agency (IRENA). (2020). Renewable Capacity Statistics 2020. Retrieved from https://irena.org/publications/2020/Mar/Renewable-Capacity-Statistics-2020 (accessed Feb. 3, 2021).
[29] Jung, J., Han, S., & Kim, B. (2019). Digital numerical map-oriented estimation of solar energy potential for site selection of photovoltaic solar panels on national highway slopes. Applied Energy, 242, 57–68.
[30] Karagülle, A. Ö. (2012). Green business for sustainable development and competitiveness: an overview of Turkish logistics industry. Procedia - Social and Behavioral Sciences, 41, 456–460.
[31] Kari, L. (2009). End-of-life PV:then what? Renewable Energy Focus, 10(4), 48–53.
[32] Li, B., Yang, J.X., Lu, B., Song, X.L. (2015). Estimation of retired mobile phones generation in China: A comparative study on methodology. Waste Management, 35, 247–254.
[33] Li, J., Dong, Q., Liu, L., & Song, Q. (2016). Measuring treatment costs of typical waste electrical and electronic equipment: A pre-research for Chinese policy making. Waste Management, 57, 36–45.
[34] Lin, S.-S., Shen, S.-L., Zhou, A., & Lyu, H.-M. (2020). Sustainable development and environmental restoration in Lake Erhai, China. Journal of Cleaner Production, 120758.
[35] Liu, C., Zhang, Q., & Wang, H. (2020). Cost-benefit analysis of waste photovoltaic module recycling in China. Waste Management, 118, 491–500.
[36] Liu, J.L., Bai, H.T., Liang, H.T., Wang, Y.T., Xu, H. (2018). How to recycle the small waste household appliances in China?. A revenue-expenditure analysis. Resources, Conservation and Recycling, 137, 292–301.
[37] Maani, T., Celik, I., Heben, M. J., Ellingson, R. J., & Apul, D. (2020). Environmental impacts of recycling crystalline silicon (c-SI) and cadmium telluride (CDTE) solar panels. Science of The Total Environment, 138827.
[38] McDonald, N. C., & Pearce, J. M. (2010). Producer responsibility and recycling solar photovoltaic modules. Energy Policy, 38(11), 7041–7047.
[39] RE100. (2014). Retrieved from https://www.there100.org/ (accessed Feb. 25, 2021).
[40] Renewable Energy Policy Network for the 21st Century (REN21). (2020). Renewables 2020 global Status Report. Retrieved from https://www.ren21.net/reports/global-status-report/ (accessed Feb. 3, 2021).
[41] Savvilotidou, V., Antoniou, A., & Gidarakos, E. (2017). Toxicity assessment and feasible recycling process for amorphous silicon and CIS waste photovoltaic panels. Waste Management, 59, 394–402.
[42] Shaaban, M., & Scheffran, J. (2017). Selection of sustainable development indicators for the assessment of electricity production in Egypt. Sustainable Energy Technologies and Assessments, 22, 65–73.
[43] Solar Energy Industries Association (SEIA). (2020). Retrieved from https://www.seia.org/ (accessed Feb. 10, 2021).
[44] Singh, R., & Banerjee, R. (2016). Impact of Solar Panel Orientation on Large Scale Rooftop Solar Photovoltaic Scenario for Mumbai. Energy Procedia, 90, 401–411.
[45] Tao, J., & Yu, S. (2015). Review on feasible recycling pathways and technologies of solar photovoltaic modules. Solar Energy Materials and Solar Cells, 141, 108–124.
[46] The Carbon Trust. (2012). Making Sense of Renewable Energy Technologies. Retrieved from https://www.carbontrust.com/ (accessed Feb. 10, 2021).
[47] Troncoso, N., Rojo-González, L., Villalobos, M., Vásquez, Ó. C., & Chávez, H. (2019). Economic decision-making tool for distributed solar photovoltaic panels and storage: The case of Chile. Energy Procedia, 159, 388–393.
[48] United Nations Framework Convention on Climate Change (UNFCCC). (2015). Adoption of the Paris Agreement. Retrieved from https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (accessed Nov. 17, 2020).
[49] United Nations Environment Programme (UNEP). (2019). Emissions Gap Report 2019. Retrieved from https://www.unenvironment.org/resources/emissions-gap-report-2019 (accessed Dec. 2, 2020).
[50] Van der Kam, M. J., Meelen, A. A. H., Van Sark, W. G. J. H. M., & Alkemade, F. (2018). Diffusion of solar photovoltaic systems and electric vehicles among Dutch consumers: Implications for the energy transition. Energy Research & Social Science, 46, 68–85.
[51] World Meteorological Organization (WMO). (2020). United in Science 2020. Retrieved from https://public.wmo.int/en/resources/united_in_science (accessed Nov. 17, 2020).
指導教授 王啟泰(Chi-Tai Wang) 審核日期 2021-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明