參考文獻 |
[1] 謝劍平, 現代投資學, 6th ed. 智勝出版社.
[2] K. Yuan, G. Liu, J. Wu, and H. Xiong, “Dancing with Trump in the Stock Market: A Deep Information Echoing Model,” ACM Trans. Intell. Syst. Technol., vol. 11, no. 5, p. 62:1-62:22, Jul. 2020, doi: 10.1145/3403578.
[3] J. Klaus and C. Koser, “Measuring Trump: The Volfefe Index and its impact on European financial markets,” Finance Res. Lett., vol. 38, p. 101447, Jan. 2021, doi: 10.1016/j.frl.2020.101447.
[4] S. Shead, “Elon Musk’s tweets are moving markets — and some investors are worried,” CNBC, Jan. 29, 2021. https://www.cnbc.com/2021/01/29/elon-musks-tweets-are-moving-markets.html (accessed Apr. 19, 2021).
[5] “Elon Musk is an investment kingmaker but traders shouldn’t blindly follow his every word - CNN.” https://edition.cnn.com/2021/02/17/investing/elon-musk-social-media/index.html (accessed Apr. 19, 2021).
[6] G. Thushan, Natural Language Processing with TensorFlow. 碁峰.
[7] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed Representations of Words and Phrases and their Compositionality,” ArXiv13104546 Cs Stat, Oct. 2013, Accessed: Apr. 19, 2021. [Online]. Available: http://arxiv.org/abs/1310.4546
[8] Q. V. Le and T. Mikolov, “Distributed Representations of Sentences and Documents,” ArXiv14054053 Cs, May 2014, Accessed: Apr. 09, 2021. [Online]. Available: http://arxiv.org/abs/1405.4053
[9] M. Vargas, B. Lima, and A. Evsukoff, “Deep learning for stock market prediction from financial news articles,” Jun. 2017, pp. 60–65. doi: 10.1109/CIVEMSA.2017.7995302.
[10] Y. Kim, “Convolutional Neural Networks for Sentence Classification,” ArXiv14085882 Cs, Sep. 2014, Accessed: May 19, 2021. [Online]. Available: http://arxiv.org/abs/1408.5882
[11] K. Fukushima, “Neocognitron: a self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position,” Biol. Cybern., vol. 36, no. 4, pp. 193–202, 1980, doi: 10.1007/BF00344251.
[12] D. Britz, “Understanding Convolutional Neural Networks for NLP,” WildML, Nov. 07, 2015. http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/ (accessed May 19, 2021).
[13] S. Minaee, N. Kalchbrenner, E. Cambria, N. Nikzad, M. Chenaghlu, and J. Gao, “Deep Learning Based Text Classification: A Comprehensive Review,” ArXiv200403705 Cs Stat, Jan. 2021, Accessed: Apr. 09, 2021. [Online]. Available: http://arxiv.org/abs/2004.03705
[14] S. Lai, L. Xu, K. Liu, and J. Zhao, “Recurrent Convolutional Neural Networks for Text Classification,” p. 7.
[15] Y. Zhai, A. Hsu, and S. K. Halgamuge, “Combining News and Technical Indicators in Daily Stock Price Trends Prediction,” in Advances in Neural Networks – ISNN 2007, Berlin, Heidelberg, 2007, pp. 1087–1096. doi: 10.1007/978-3-540-72395-0_132.
[16] R. P. Schumaker and H. Chen, “A quantitative stock prediction system based on financial news,” Inf. Process. Manag., vol. 45, no. 5, pp. 571–583, Sep. 2009, doi: 10.1016/j.ipm.2009.05.001.
[17] X. Li, C. Wang, J. Dong, F. Wang, X. Deng, and S. Zhu, “Improving Stock Market Prediction by Integrating Both Market News and Stock Prices,” in Database and Expert Systems Applications, Berlin, Heidelberg, 2011, pp. 279–293. doi: 10.1007/978-3-642-23091-2_24.
[18] E. Junqué de Fortuny, T. De Smedt, D. Martens, and W. Daelemans, “Evaluating and understanding text-based stock price prediction models,” Inf. Process. Manag., vol. 50, no. 2, pp. 426–441, Mar. 2014, doi: 10.1016/j.ipm.2013.12.002.
[19] V. Lavrenko, M. Schmill, D. Lawrie, P. Ogilvie, D. Jensen, and J. Allan, “Language models for financial news recommendation,” in Proceedings of the ninth international conference on Information and knowledge management, New York, NY, USA, Nov. 2000, pp. 389–396. doi: 10.1145/354756.354845.
[20] M. Mittermayer and G. Knolmayer, “NewsCATS: A News Categorization and Trading System,” in Sixth International Conference on Data Mining (ICDM’06), Hong Kong, China, Dec. 2006, pp. 1002–1007. doi: 10.1109/ICDM.2006.115.
[21] X. Ding, Y. Zhang, T. Liu, and J. Duan, “Deep Learning for Event-Driven Stock Prediction,” p. 7, 2015.
[22] A. Tafti, R. Zotti, and W. Jank, “Real-Time Diffusion of Information on Twitter and the Financial Markets,” PLOS ONE, vol. 11, no. 8, p. e0159226, Aug. 2016, doi: 10.1371/journal.pone.0159226.
[23] R. Akita, A. Yoshihara, T. Matsubara, and K. Uehara, “Deep learning for stock prediction using numerical and textual information,” in 2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS), Okayama, Japan, Jun. 2016, pp. 1–6. doi: 10.1109/ICIS.2016.7550882.
[24] M. Phillips, “Nasdaq: Here’s Our Timeline of the Flash Crash,” Wall Street Journal, May 11, 2010. Accessed: Apr. 20, 2021. [Online]. Available: https://www.wsj.com/articles/BL-MB-21942
[25] G. Shorter and R. S. Miller, “High-Frequency Trading: Background, Concerns, and Regulatory Developments,” p. 47.
[26] J. Bollen, H. Mao, and X. Zeng, “Twitter mood predicts the stock market,” J. Comput. Sci., vol. 2, no. 1, pp. 1–8, Mar. 2011, doi: 10.1016/j.jocs.2010.12.007.
[27] J. Yang, C. Zhao, H. Yu, and H. Chen, “Use GBDT to Predict the Stock Market,” Procedia Comput. Sci., vol. 174, pp. 161–171, Jan. 2020, doi: 10.1016/j.procs.2020.06.071.
[28] X. Ji, J. Wang, and Z. Yan, “A stock price prediction method based on deep learning technology,” Int. J. Crowd Sci., vol. ahead-of-print, no. ahead-of-print, Jan. 2021, doi: 10.1108/IJCS-05-2020-0012.
[29] T. Matsubara, R. Akita, and K. Uehara, “Stock Price Prediction by Deep Neural Generative Model of News Articles,” IEICE Trans. Inf. Syst., vol. E101.D, no. 4, pp. 901–908, 2018, doi: 10.1587/transinf.2016IIP0016.
[30] H. Lee, M. Surdeanu, B. MacCartney, and D. Jurafsky, “On the Importance of Text Analysis for Stock Price Prediction,” p. 6.
[31] Y. Peng and H. Jiang, “Leverage Financial News to Predict Stock Price Movements Using Word Embeddings and Deep Neural Networks,” in Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego, California, 2016, pp. 374–379. doi: 10.18653/v1/N16-1041.
[32] L. Yang et al., “Explainable Text-Driven Neural Network for Stock Prediction,” in 2018 5th IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS), Nanjing, China, Nov. 2018, pp. 441–445. doi: 10.1109/CCIS.2018.8691233.
[33] P. Cremonesi et al., “Social Network based Short-Term Stock Trading System,” p. 8.
[34] “End of Day Stock Market Data API | Tiingo.” https://api.tiingo.com/products/end-of-day-stock-price-data (accessed Apr. 29, 2021).
[35] “Top 10 U.S. Daily Newspapers,” Cision. https://www.cision.com/2019/01/top-ten-us-daily-newspapers/ (accessed Apr. 29, 2021).
[36] “List of business newspapers,” Wikipedia. Apr. 15, 2021. Accessed: Apr. 29, 2021. [Online]. Available: https://en.wikipedia.org/w/index.php?title=List_of_business_newspapers&oldid=1017868117
[37] X. Ding, Y. Zhang, T. Liu, and J. Duan, “Using Structured Events to Predict Stock Price Movement: An Empirical Investigation,” in Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 2014, pp. 1415–1425. doi: 10.3115/v1/D14-1148.
|