博碩士論文 108521024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:18.119.19.205
姓名 廖宇聰(Yu-Tsung Liao)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 三維橋接式四面體網格開發及矩陣係數驗證與半導體元件模擬
(3D Bridged Cube Element and Matrix Coefficient Verification and Its Applications to Semiconductor Device Simulation)
相關論文
★ 表面電漿共振效應於光奈米元件之數值研究★ 金氧半電容元件的暫態模擬之數值量測
★ 雙載子電晶體在一維和二維空間上模擬的比較★ 改善後的階層化不完全LU法及其在二維半導體元件模擬上的應用
★ 一維雙載子接面電晶體數值模擬之驗證及其在元件與電路混階模擬之應用★ 階層化不完全LU法及其在準靜態金氧半場效電晶體電容模擬上的應用
★ 探討分離式簡化電路模型在半導體元件模擬上的效益★ 撞擊游離的等效電路模型與其在半導體元件模擬上之應用
★ 二維半導體元件模擬的電流和電場分析★ 三維半導體元件模擬器之開發及SOI MOSFET特性分析
★ 元件分割法及其在二維互補式金氧半導體元件之模擬★ 含改良型L-ILU解法器及PDM電路表述之二維及三維元件數值模擬器之開發
★ 含費米積分之高效率載子解析模型及其在元件模擬上的應用★ 量子力學等效電路模型之建立及其對元件模擬之探討
★ 適用於二維及三維半導體元件模擬的可調變式元件切割法★ 整合式的混階模擬器之開發及其在振盪電路上的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文研究之主旨在於開發一套用以模擬三維半導體元件之程式模擬架構,我們的模擬架構建立在有限元素法的理論上,使用了四面體網格重心法模型來劃分網格內各個節點區域的空間電荷體積與電場高斯面,以此來運算各項等效電流值。而我們使用重心法模型的目的在於四面體之重心必定在模型內部,所以我們的網格模型能容許各種形狀的四面體。在模擬架構之精確性方面,藉由比對等效電流的矩陣係數之理論值與實驗值來進行矩陣係數的驗證,可以判斷我們的模擬程式是否正確,若比對結果之誤差過大,表示程式存在缺陷,此時我們可以藉由觀察是哪一項矩陣係數出現誤差,快速找出對應的位置來除錯,因此驗證矩陣係數的目的在於可以確認程式是否存在缺陷並且幫助我們更簡單地對程式進行除錯。在論文最後的部分,我們模擬了PN junction diode、MOS capacitor以及Bipolar junction transistor之特性曲線,其模擬結果符合我們的預期,證實了三維橋接式四面體網格之模擬架構用於半導體元件模擬是足夠可靠的。
摘要(英) The main purpose of this thesis is to develop a simulation framework for simulating three-dimensional semiconductor devices. Our simulation framework is based on the theory of finite element method. We use the center of gravity model for the tetrahedral cube to create the equivalent circuit model. The purpose of using the center of gravity model is that the center of gravity of the tetrahedron is always inside the cube, so our mesh model can tolerate tetrahedrons of various shapes. In terms of the accuracy of the simulation framework, we can verify the matrix coefficients by comparing the theoretical values and experimental values of the equivalent current matrix coefficients to determine whether our simulation program is correct. If the error of the comparison result is too large, it means that the program is defective. At this time, we can quickly find the corresponding position to debug by observing which matrix coefficient has the error. Therefore, the purpose of verifying the matrix coefficient is it can confirm whether the program has defects and help us debug the program more easily. In the last part of the thesis, we simulated the characteristic curves of PN junction diode, MOS capacitor and Bipolar junction transistor. The simulation results are in line with our expectations. It is proved that the simulation framework of the three-dimensional bridged tetrahedral mesh is reliable enough for the simulation of semiconductor devices.
關鍵字(中) ★ 半導體元件
★ 模擬
★ 有限元素法
關鍵字(英) ★ SEMICONDUCTOR
★ SIMULATION
★ FINITE ELEMENT METHOD
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 v
表目錄 vii

第一章 簡介 1
第二章 三維模擬方法之架構 3
2.1 有限元素法之基本原理 3
2.2 三維橋接式等效電路模型之運算方程式推導 5
2.3 三維四面體重心法元素之模型架構 9
2.4 重心法與外心法之優缺點比較 11
第三章 三維橋接式矩陣係數驗證 13
3.1 三維橋接式四面體元素之內部等效電場分析 13
3.2 三維橋接式四面體元素之矩陣係數架構 18
3.3 三維橋接式四面體元素之矩陣係數驗證 32
第四章 四面體元素在半導體元件模擬之應用 37
4.1 PN junction diode之模擬應用 37
4.2 MOS capacitor之模擬應用 39
4.3 Bipolar junction transistor之模擬應用 42
第五章 結論 44
參考文獻 45
參考文獻 [1] H. D. Rees, “Computer Simulation of Semiconductor Devices”, Journal of Physics C: Solid State Physics, Volume 6, Number 2, pp.262-273, IOP Publishing Ltd, Jan. 1973
[2] C. Zienkiewicz, R. L. Taylor and J. Z. Zhu, The Finite Element. Method: Its Basis and. Fundamentals, Sixth Edition, Butterworth-Heinemann, Oxford, Apr. 2005.
[3] Y. Lee and A. A. O. Tay, “Finite Element Thermal Stress Analysis of a Solar Photovoltaic Module,” 2011 37th IEEE Photovoltaic Specialists Conference, pp. 3179 - 3184, Seattle, USA, Jun. 2011.
[4] S. C. Brenner and L. Y. Sung, “Linear Finite Element Methods for Planar Linear Elasticity”, Mathematics of Computation, Vol. 59, No. 200, pp. 321 - 338, American Mathematical Society, Oct. 1992.
[5] M.N.O. Sadiku, “A Simple Introduction to Finite Element Analysis of Electromagnetic Problems”, IEEE Transactions on Education, Vol. 32, No. 2, pp. 85 - 93, IEEE, May. 1989.
[6] N. Mohamed and M. Z. Sujod, “Finite Elements in Semiconductor Devices”, International Conference on Information Management and Engineering, pp.108-110, Kuala Lumpur, Malaysia, Apr. 2009.
[7] R. E. Bank, D. J. Rose and W. Fichtner, “Numerical Methods for Semiconductor Device”, IEEE Transaction on Electron Devices, vol. 30, No. 9, pp.1031 - 1041, IEEE, Sept. 1983.
[8] D. A. Neamen, Semiconductor Physics and Devices, 3rd edition. McGraw-Hill Companies Inc., New York, 2003.


[9] T. D. Pauw and W. F. Pfeffer, “The Divergence Theorem for Unbounded Vector Fields”, Transactions of the American Mathematical Society, Vol. 359, No. 12, pp. 5915 - 5929, American Mathematical Society, Dec. 2007.
[10] A. R. Klivans, R. O′ Donnell and R. A. Servedio, “Learning Geometric Concepts via Gaussian Surface Area” 2008 49th Annual IEEE Symposium on Foundations of Computer Science, pp.541 - 550, Philadelphia, USA, Oct. 2008.
[11] K. C. Chien, “Finding Internal Vector from the Barycenter of Vector in Tetrahedron for 3-D Semiconductor Device Simulation”, Nation Central University, M. S. Thesis, Jun. 2017.
[12] D. Shenton and Z. Cendes, “MAX - An expert system for automatic adaptive magnetics modeling”, IEEE Transactions on Magnetics, Vol. 22, No. 5, pp. 805 - 807, IEEE, Sep. 1986.
[13] J. O′Dwyer and P. Evans, “Triangular Element Refinement in Automatic Adaptive Mesh Generation”, IEEE Transactions on Magnetics, Vol. 33, No. 2, pp. 805 - 807, IEEE, Mar. 1997.
[14] P. Feldmann and R.A. Rohrer, “Proof of the Number of iIndependent Kirchhoff Equations in an Electrical Circuit”, IEEE Transactions on Circuits and Systems, vol. 38, No. 7, pp.681 - 684, IEEE, Jul. 1991.
[15] L. T. Wang, “Development of Point-added Cube Element and its Application to Semiconductor Device Simulation”, Nation Central University, M. S. Thesis, Jun. 2018.
[16] I. Kyrchei, Advances in Linear Algebra Research, Nova Science Publishers Inc., New York, 2015.


[17] T. J. Ypma, “Historical Development of the Newton–Raphson Method”, SIAM Review, vol. 37, No. 4, pp.531 - 551, Society for Industrial and Applied Mathematics, Dec. 1995.
[18] R. A. Jabr, M. Hamad and Y. M. Mohanna, “Newton-Raphson Solution of Poisson’s Equation in a PN Diode”, International Journal of Electrical Engineering Education, 44.1, pp.23 - 33, Jan. 2007.
[19] B. L. Anderson and R. L. Anderson, Fundamentals of Semiconductor Devices,1st Edition, McGraw-Hill College, New York, Nov. 2004.
[20] Y. C. Lai, “1D Matrix Coefficient Verification And Semiconductor Device Simulation”, Nation Central University, M. S. Thesis, Jun. 2020.
[21] J. Burgler, P. Conti, G. Heiser, S. Paschedag and W. Fichtner, “Three-Dimensional Simulation of Complex Semiconductor Device Structures,” International Symposium on VLSI Technology, Systems and Applications, pp. 106 - 110, Taipei, Taiwan, May. 1989.
[22] M. Putti and C. Cordes, “Finite Element Approximation of the Diffusion Operator on Tetrahedra”, SIAM J. SCI. COMPUT., Vol. 19, No. 4, pp. 1154 – 1168, Society for Industrial and Applied Mathematics, July 1998.
[23] W. Schilders, J. J. H. Miller and S. Wang, “Application of Finite Element Methods to the Simulation of Semiconductor Devices”, Review article, ResearchGate, Nov. 2019.
[24] Y. Y. Li, “Finding Internal Vector from the Taylor Series in Tetrahadron Element for 3D Semiconductor Device Simulation”, Nation Central University, M. S. Thesis, Jun. 2019.
[25] N. Jankovic, T. Pesic and J. Karamarkovic, “1D Physically Based Non-Quasi-Static Analog Behavioral BJT Model for SPICE”, 2002 International Conference on Microelectronics , pp.463 - 468, Nis, Yugoslavia, May, 2002.
指導教授 蔡曜聰(Yao-Tsung Tsai) 審核日期 2021-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明