參考文獻 |
[1] H. D. Rees, “Computer Simulation of Semiconductor Devices”, Journal of Physics C: Solid State Physics, Volume 6, Number 2, pp.262-273, IOP Publishing Ltd, Jan. 1973
[2] C. Zienkiewicz, R. L. Taylor and J. Z. Zhu, The Finite Element. Method: Its Basis and. Fundamentals, Sixth Edition, Butterworth-Heinemann, Oxford, Apr. 2005.
[3] Y. Lee and A. A. O. Tay, “Finite Element Thermal Stress Analysis of a Solar Photovoltaic Module,” 2011 37th IEEE Photovoltaic Specialists Conference, pp. 3179 - 3184, Seattle, USA, Jun. 2011.
[4] S. C. Brenner and L. Y. Sung, “Linear Finite Element Methods for Planar Linear Elasticity”, Mathematics of Computation, Vol. 59, No. 200, pp. 321 - 338, American Mathematical Society, Oct. 1992.
[5] M.N.O. Sadiku, “A Simple Introduction to Finite Element Analysis of Electromagnetic Problems”, IEEE Transactions on Education, Vol. 32, No. 2, pp. 85 - 93, IEEE, May. 1989.
[6] N. Mohamed and M. Z. Sujod, “Finite Elements in Semiconductor Devices”, International Conference on Information Management and Engineering, pp.108-110, Kuala Lumpur, Malaysia, Apr. 2009.
[7] R. E. Bank, D. J. Rose and W. Fichtner, “Numerical Methods for Semiconductor Device”, IEEE Transaction on Electron Devices, vol. 30, No. 9, pp.1031 - 1041, IEEE, Sept. 1983.
[8] D. A. Neamen, Semiconductor Physics and Devices, 3rd edition. McGraw-Hill Companies Inc., New York, 2003.
[9] T. D. Pauw and W. F. Pfeffer, “The Divergence Theorem for Unbounded Vector Fields”, Transactions of the American Mathematical Society, Vol. 359, No. 12, pp. 5915 - 5929, American Mathematical Society, Dec. 2007.
[10] A. R. Klivans, R. O′ Donnell and R. A. Servedio, “Learning Geometric Concepts via Gaussian Surface Area” 2008 49th Annual IEEE Symposium on Foundations of Computer Science, pp.541 - 550, Philadelphia, USA, Oct. 2008.
[11] K. C. Chien, “Finding Internal Vector from the Barycenter of Vector in Tetrahedron for 3-D Semiconductor Device Simulation”, Nation Central University, M. S. Thesis, Jun. 2017.
[12] D. Shenton and Z. Cendes, “MAX - An expert system for automatic adaptive magnetics modeling”, IEEE Transactions on Magnetics, Vol. 22, No. 5, pp. 805 - 807, IEEE, Sep. 1986.
[13] J. O′Dwyer and P. Evans, “Triangular Element Refinement in Automatic Adaptive Mesh Generation”, IEEE Transactions on Magnetics, Vol. 33, No. 2, pp. 805 - 807, IEEE, Mar. 1997.
[14] P. Feldmann and R.A. Rohrer, “Proof of the Number of iIndependent Kirchhoff Equations in an Electrical Circuit”, IEEE Transactions on Circuits and Systems, vol. 38, No. 7, pp.681 - 684, IEEE, Jul. 1991.
[15] L. T. Wang, “Development of Point-added Cube Element and its Application to Semiconductor Device Simulation”, Nation Central University, M. S. Thesis, Jun. 2018.
[16] I. Kyrchei, Advances in Linear Algebra Research, Nova Science Publishers Inc., New York, 2015.
[17] T. J. Ypma, “Historical Development of the Newton–Raphson Method”, SIAM Review, vol. 37, No. 4, pp.531 - 551, Society for Industrial and Applied Mathematics, Dec. 1995.
[18] R. A. Jabr, M. Hamad and Y. M. Mohanna, “Newton-Raphson Solution of Poisson’s Equation in a PN Diode”, International Journal of Electrical Engineering Education, 44.1, pp.23 - 33, Jan. 2007.
[19] B. L. Anderson and R. L. Anderson, Fundamentals of Semiconductor Devices,1st Edition, McGraw-Hill College, New York, Nov. 2004.
[20] Y. C. Lai, “1D Matrix Coefficient Verification And Semiconductor Device Simulation”, Nation Central University, M. S. Thesis, Jun. 2020.
[21] J. Burgler, P. Conti, G. Heiser, S. Paschedag and W. Fichtner, “Three-Dimensional Simulation of Complex Semiconductor Device Structures,” International Symposium on VLSI Technology, Systems and Applications, pp. 106 - 110, Taipei, Taiwan, May. 1989.
[22] M. Putti and C. Cordes, “Finite Element Approximation of the Diffusion Operator on Tetrahedra”, SIAM J. SCI. COMPUT., Vol. 19, No. 4, pp. 1154 – 1168, Society for Industrial and Applied Mathematics, July 1998.
[23] W. Schilders, J. J. H. Miller and S. Wang, “Application of Finite Element Methods to the Simulation of Semiconductor Devices”, Review article, ResearchGate, Nov. 2019.
[24] Y. Y. Li, “Finding Internal Vector from the Taylor Series in Tetrahadron Element for 3D Semiconductor Device Simulation”, Nation Central University, M. S. Thesis, Jun. 2019.
[25] N. Jankovic, T. Pesic and J. Karamarkovic, “1D Physically Based Non-Quasi-Static Analog Behavioral BJT Model for SPICE”, 2002 International Conference on Microelectronics , pp.463 - 468, Nis, Yugoslavia, May, 2002. |