參考文獻 |
[1] C. A. Ross, R. L. Margolis, S. A.J. Reading, M. Pletnikov, and J. T. Coyle “Neurobiology of schizophrenia,” Neuron, vol. 52, no.1 ,pp. 139-153, Oct. 2006.
[2] Y. Tang, L. Wang, F. Cao and L. Tan, “Identify schizophrenia using resting-state functional connectivity: an exploratory research and analysis,”Biomed Eng Online, vol. 11, no. 50, Aug. 2012.
[3] D. Lei, W. H. L. Pinaya, T. Amelsvoor , M. Marcelis, G. Donohoe, D. O. Mothersill, A. Corvin, M. Gill, S. Vieira, X. Huang, S. Lui, C. Scarpazza, J. Young, C. Arango, E. Bullmore, G. Qiyong, P. McGuire, and A. Mechelli, ”Detecting schizophrenia at the level of the individual: relative diagnostic value of wholebrain images, connectome-wide functional connectivity and graph-based metrics,” Psychological Medicine, vol. 50, no. 11, pp. 1852–1861, Aug. 2020.
[4] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.Courville and Y. Bengio, “Generative Adversarial Nets,” Advances in Neural Information Processing Systems 27, 2014.
[5] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adversarial networks,” Proceedings of the 34th International Conference on Machine Learning, vol.70, pp.214-223, 2017.
[6] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin and A. Courville, “Improved Training of Wasserstein GANs,” 2017, arXiv:1704.00028
[7] T. Miyato, T. Kataoka, M. Koyama and Y. Yoshida, “Spectral Normalization for Generative Adversarial Networks,” ICLR, 2018.
[8] M. Mirza and S. Osindero, “Conditional Generative Adversarial Nets,” 2014, arXiv:1411.1784
[9] T. Chavdarova and F. Fleuret, “SGAN: An Alternative Training of Generative Adversarial Networks,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 9407-9415
[10] T. Miyato and M. Koyama, “cGANs with Projection Discriminator,” In ICLR, 2018.
[11] V. Dumoulin, J. Shlens, and M. Kudlur, “A learned representation for artistic style” In ICLR, Nov. 2017.
[12] J. Zhao, J. Huang, D. Zhi, W. Yan, X. Mad, X. Yang, X. Lif, Q. Keg, T. Jiang, V. D. Calhounh and J. Suib, “Functional network connectivity (FNC)-based generative adversarial network (GAN) and its applications in classification of mental disorders,” Journal of Neuroscience Methods, vol.341, pp.108756, July, 2020.
[13] E. T. Rolls, C.-C. Huang, C.-P. Lin, J. Feng, and M. Joliot, “Automated anatomical labelling atlas 3,” NeuroImage, vol. 206, pp. 116189, Aug. 2020.
[14] E. Rolls, M. Joliot, and N. Tzourio-Mazoyer, “Implementation of a new parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas,” NeuroImage, vol. 122, pp. 1-5, Nov. 2015.
[15] X. Shen, F. Tokoglu, X. Papademetris, and R. T. Constable, “Groupwise whole-brain parcellation from resting-state fMRI data for network node identification, ” NeuroImage, vol. 82, pp. 403-415., Nov. 2013.
[16] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM Trans. Intelligent Syst. Technol., vol. 2, no. 3, pp.1–27, 2011.
[17] H.-F. Yu, F.-L. Huang and C.-J. Lin, "Dual coordinate descent methods for logistic regression and maximum entropy models," Machine Learning , vol. 85, no. 1–2, pp. 41–75, Oct. 2011.
[18] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no.1, pp.5-32, Oct. 2001.
[19] H. Xiao, K. Rasul and R. Vollgraf, “Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms,” 2017, arXiv:1708.07747
[20] A. Coates, H. Lee and A. Y. Ng, ” An Analysis of Single-Layer Networks in Unsupervised Feature Learning,” Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, vol.15, pp.215-223, 2011 |