參考文獻 |
[1] B. Afshar and A. M. Niknejad, “A robust 24 mW 60 GHz receiver in 90 nm standard CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2008, pp. 182–183.
[2] K. Kang, F. Lin, D.-D. Pham, J. Brinkhoff, C.-H. Heng, Y. X. Guo, and X. Yuan, “A 60- GHz OOK receiver with an on-chip antenna in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 9, pp. 1720–1731, Sep. 2010.
[3] K. Okada et al., “A 60- GHz 16QAM/8PSK/QPSK/BPSK direct-conversion transceiver for IEEE 802.15.3c,” IEEE J. Solid-State Circuits, vol. 46, no. 12, pp. 2988–3004, Dec. 2011.
[4] V. Jain, B. Javid, and P. Heydari, “A BiCMOS dual-band millimeterwave frequency synthesizer for automotive radars,” IEEE J. Solid-StateCircuits, vol. 44, no. 8, pp. 2100–2113, Aug. 2009.
[5] A. Arbabian, S. Callender, S. Kang, B. Afshar, J.-C. Chien, and A. Niknejad, “A 90 GHz hybrid switching pulsed-transmitter for medical imaging,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2667–2681, Dec. 2010.2113, Aug. 2009.
[6] D. Murphy, Q. J. Gu, Y.-C. Wu, H.-Y. Jian, Z. Xu, A. Tang, F. Wang, and M.-C. F. Chang, “A low phase noise, wideband and compact CMOS PLL for use in a heterodyne 802.15.3c transceiver,” IEEE J. Solid-State Circuits, vol. 46, no. 7, pp.1606-1617, Jul. 2011.
[7] A. Arbabian, S. Kang, S. Callender, J.-C. Chien, B. Afshar, and A. Niknejad, “A 94 GHz mm-wave to baseband pulsed-radar for imaging and gesture recognition,” IEEE Int. Symp. on VLSI Design, Automation and Test, Jun. 2012, pp. 56-57.
[8] A. Arbabian, S. Callender, S. Kang, M. Rangwala, and A. Niknejad, “A 94 GHz mm-wave-to-baseband pulsed-radar transceiver with applications in imaging and gesture recognition,” IEEE J. Solid-State Circuits, vol. 48, no. 4, pp. 1055–1071, Apr. 2013.
[9] M.-W. Li, P.-C. Wang, T.-H. Huang, and H.-R. Chuang, “Low-voltage, wide-locking-range, millimeter-wave divide-by-5 injection-locked frequency divider,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 3, pp. 679-685, Mar. 2012.
[10] F. Behbahani, Y. Kishigami, J. Leete, and A. A. Abidi, “CMOS mixers and polyphase filters for large image rejection,” IEEE J. Solid-State Circuits, vol. 36, no. 6, pp. 873–887, Jun. 2001.
[11] A. Natarajan, A. Komijani, X. Guan, A. Babakhani, and A. Hajimiri, “A 77-GHz phased-array transceiver with on-chip antennas in silicon: Transmitter and local LO-path phase shifting,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2807–2819, Dec. 2006.
[12] P. Andreani and X. Wang, “On the phase-noise and phase-error performances of multiphase LC CMOS VCOs,” IEEE Journal o f Solid-State Circuits, vol. 39, no. 11, pp. 1883-1893, Nov. 2004.
[13] N. C. Kuo, J. C. Chien, and A. M. Niknejad, “Design and analysis on bidirectionally and passively coupled QVCO with nonlinear coupler,” IEEE Trans Microw. Theory Tech., vol. 63, no. 4, pp. 1130-1141, Apr. 2015.
[14] T. Xi, S. Guo, P. Gui, D. Huang, Y. Fan, and M. Morgan, “Low phase-noise 54-GHz transformer-coupled quadrature VCO and 76-/90- GHz VCOs in 65-nm CMOS,” IEEE IEEE Trans Microw. Theory Tech., vol. 64, no. 7, pp. 2091-2103, Jul. 2016.
[15] X. Yi, C. C. Boon, H. Liu, J. F. Lin and W. M. Lim, "A 57.9-to-68.3 GHz 24.6 mW Frequency Synthesizer With In-Phase Injection-Coupled QVCO in 65 nm CMOS Technology," IEEE J. Solid-State Circuits, vol. 49, no. 2, pp. 347-359, Feb. 2014.
[16] H.-R. Kim, C.-Y. Cha, S.-M. Oh, M.-S. Yang, and S.-G. Lee, “A very low-power quadrature VCO with back-gate coupling,” IEEE J. Solid-State Circuits, vol. 39, no. 6, pp. 952–955, Jun. 2004.
[17] 詹駿清,毫米波注入鎖定振盪器及鎖頻迴路之研究,國立中央大學電機工程研究所 碩士論文,民國 105 年。
[18] I.-S. Shen, C.-F. Jou, “A X -Band Capacitor-Coupled QVCO Using Sinusoidal Current Bias Technique,” IEEE Trans Microw. Theory Tech., vol.60, no.2, pp.318-328, Feb. 2012.
[19] P. -Y. Wang, G. -Y. Su, Y. -C. Chang, D. -C. Chang and S. S. H. Hsu, "A Transformer-Based Current-Reuse QVCO With an FoM Up to −200.5 dBc/Hz," IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 65, no. 6, pp. 749-753, Jun. 2018.
[20] H.-Y. Chang, C.-H. Lin, Y.-C. Liu, Y.-L. Yeh, K. Chen, S.-H. Wu, “65-nm CMOS Dual-Gate Device for Ka-Band Broadband Low-Noise Amplifier and High-Accuracy Quadrature Voltage-Controlled Oscillator,” IEEE Trans Microw. Theory Tech., vol.61, no.6, pp.2402-2413, Jun. 2013.
[21] 邱垣達,低功耗相位雜訊差動及四相位單晶微波積體電路壓控振盪器之研究。國立中央大學電機工程研究所碩士論文,民國100年。
[22] Q. Jiang and Q. Pan, "Analysis and Design of Tuning-Less mm-Wave Injection-Locked Frequency Dividers With Wide Locking Range Using 8th-Order Transformer-Based Resonator in 40 nm CMOS," IEEE J. Solid-State Circuits, vol. 39, no. 10, pp. 1–1, Mar. 2022.
[23] L. Zhang, A. Ameri, Y.-A. Li, N.-C. Kuo, M. Anwar, A.-M. Niknejad, “A 37.5-45. l GHz Superharmonic-Coupled QVCO with Tunable Phase Accuracy in 28nm Bulk CMOS,” IEEE Asian Solid-State Circuits Conf. Dig. Tech. Papers, pp.223-226, Nov. 2018.
[24] C. Li, L. Wu, W. Che and Q. Xue, "Phase Shift Techniques for Improving Varactor-Less QVCO Based on Rotated-Phase-Tuning," IEEE Trans. Circuits Syst. II: Exp. Briefs., vol. 69, no. 2, pp. 279-283, Feb. 2022.
[25] J. Zhu, Q. Jiang, H. Mosalam, C. Zhan and Q. Pan, "A 19–48.3 GHz 6th-Order Transformer-Based Injection-Locked Frequency Divider With 87.1% Locking Range in 40-nm CMOS," IEEE Trans. Circuits Syst. II:Exp. Briefs., vol. 68, no. 9, pp. 3053-3057, Sept. 2021.
[26] Q. Jiang and Q. Pan, "Tuning-Less Injection-Locked Frequency Dividers with Wide Locking Range Utilizing 8th-Order Transformer-Based Resonator," in IEEE Radio Frequency Integrated Circuits Symposium, 2021, pp. 159-162.
[27] H. Nam and J. Park, "A W-Band Divide-by-Three Injection-Locked Frequency Divider With Injection Current Boosting Utilizing Inductive Feedback in 65-nm CMOS," IEEE Microw. Wireless Compon. Lett., vol. 30, no. 5, pp. 516-519, May. 2020.
[28] Y.-W. Chen, T.-N. Luo, H. Cruz, and Y.-J.-E. Chen, “A W-band harmonically enhanced CMOS divide-by-three frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 4, pp. 257–259, Apr. 2014.
[29] S. -L. Jang, G. -Z. Li and W. -C. Lai, "Wide-Locking Range RLC-Tank Balanced-Injection Divide-by-5 Injection-Locked Frequency Dividers Based on Harmonic Mixing," IEEE Trans Microw. Theory Tech., vol. 68, no. 3, pp. 894-903, Mar. 2020.
[30] 林品安,使用諧波增強高除是注入鎖定除頻器與四相位考畢子壓控振盪器之研製,國立中央大學電機工程研究所 碩士論文,民國 110 年。
[31] 葉瀚濃,使用注入鎖定技術之 W 頻段除三除頻器與 V 頻段除六除頻器及 Q 頻段鎖 頻迴路,國立中央大學電機工程研究所碩士論文,民國 107 年。
[32] 李昇洺,V 及 D 頻段高除數注入鎖定除頻器與四相位鎖頻迴路之研製,國立中央大學電機工程研究所碩士論文,民國 106 年。
[33] S. -L. Jang, H. -W. Lai and J. -Y. Sung, "Current-Reused Divide-by-16 Injection-Locked Frequency Divider," IEEE Microw. Wireless Compon. Lett., vol. 32, no. 5, pp. 426-429, May 2022.
[34] D. Turker et al., "A 7.4-to-14GHz PLL with 54fsrms jitter in 16nm FinFET for integrated RF-data-converter SoCs," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2018, pp. 378-380.
[35] Y. Chen, L. Praamsma, N. Ivanisevic and D. M. W. Leenaerts, "A 40GHz PLL with −92.5dBc/Hz in-band phase noise and 104 fs-RMS-jitter," in proc. IEEE RFIC Symp., 2017, pp. 31-32.
[36] D. -G. Lee and P. P. Mercier, "A Sub-mW 2.4-GHz Active-Mixer-Adopted Sub-Sampling PLL Achieving an FoM of −256 dB," IEEE J. Solid-State Circuits, vol. 55, no. 6, pp. 1542-1552, Jun. 2020.
[37] J. -H. Seol, K. Choo, D. Blaauw, D. Sylvester and T. Jang, "Reference Oversampling PLL Achieving −256-dB FoM and −78-dBc Reference Spur," IEEE J. Solid-State Circuits, vol. 56, no. 10, pp. 2993-3007, Oct. 2021.
[38] D. Liao, R. Wang and F. F. Dai, "A low-noise inductor-less fractional-N sub-sampling PLL with multi-ring oscillator," in proc. IEEE RFIC Symp., 2017, pp. 108-111.
[39] A. Tharayil Narayanan et al., "A Fractional-N Sub-Sampling PLL using a Pipelined Phase-Interpolator With an FoM of -250 dB," IEEE J. Solid-State Circuits, vol. 51, no. 7, pp. 1630-1640, Jul. 2016.
[40] N. Markulic et al., "A DTC-Based Subsampling PLL Capable of Self-Calibrated Fractional Synthesis and Two-Point Modulation," IEEE J. Solid-State Circuits, vol. 51, no. 12, pp. 3078-3092, Dec. 2016.
[41] T. -H. Tsai, R. -B. Sheen, S. -Y. Hsu, C. -H. Chang and R. B. Staszewski, "A 55.9-fs Integrated Jitter (100 kHz–100 MHz) Hybrid LC-Tank PLL in 5-nm FinFET Using Programmable Phase Realignment and Dynamic Coarse Tuning," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, vol. 4, pp. 230-233, 2021.
[42] W. El-Halwagy, A. Nag, P. Hisayasu, F. Aryanfar, P. Mousavi and M. Hossain, "A 28-GHz Quadrature Fractional-N Frequency Synthesizer for 5G Transceivers With Less Than 100-fs Jitter Based on Cascaded PLL Architecture," IEEE Trans Microw. Theory Tech., vol. 65, no. 2, pp. 396-413, Feb. 2017.
[43] T. -H. Tsai, R. -B. Sheen, S. -Y. Hsu, C. -H. Chang and R. B. Staszewski, "A 55.9-fs Integrated Jitter (100 kHz–100 MHz) Hybrid LC-Tank PLL in 5-nm FinFET Using Programmable Phase Realignment and Dynamic Coarse Tuning," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, vol. 4, pp. 230-233, 2021.
[44] K. Kwok and H. C. Luong, "Ultra-low-Voltage high-performance CMOS VCOs using transformer feedback," IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 652-660, Mar. 2005.
[45] Y. Chao, H. C. Luong and Z. Hong, "Analysis and Design of a 14.1-mW 50/100-GHz Transformer-Based PLL With Embedded Phase Shifter in 65-nm CMOS," IEEE Trans Microw. Theory Tech., vol. 63, no. 4, pp. 1193-1201, Apr. 2015.
[46] S.-J. Yun, S.-B. Shin, H.-C. Choi, S.-G. Lee, “A 1mW Current-Reuse CMOS Differential LC-VCO with Low Phase Noise,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, vol.1, pp.540-616, Feb. 2005.
[47] X. Yi, Z. Liang, G. Feng, C. C. Boon and F. Meng, "A 93.4-to-104.8 GHz 57 mW fractional-N cascaded sub-sampling PLL with true in-phase injection-coupled QVCO in 65 nm CMOS," in IEEE Radio Frequency Integrated Circuits Symposium, 2016, pp.122-125.
[48] Xuqiang Zheng, Fangxu Lv, Lei Zhou, Danyu Wu, Jin Wu, Chun Zhang, Woogeun Rhee and Xinyu Liu, “Frequency-Domain Modeling and Analysis of Injection-Locked Oscillators,” IEEE J. Solid-State Circuits, vol. 55, no. 6, pp.1651-1664, June. 2020.
[49] B. Razavi, RF Microelectronics, Prentice Hall, 1998.
[50] 高曜煌,射頻鎖相迴路 IC 設計,第二章,滄海書局,民國 94 年。
[51] 劉深淵、楊清淵,鎖相迴路,滄海書局,民國 100 年。
[52] 葉彥良,應用於微波及毫米波鎖相迴路之金氧半場效電晶體注入鎖定振盪器研究, 國立中央大學電機工程研究所博士論文,民國 102 年。
[53] M. Abdulaziz, T. Forsberg, M. Törmänen, H. Sjöland, “A 10-mW mm-Wave Phase-Locked Loop With Improved Lock Time in 28-nm FD-SOI CMOS” IEEE Trans Microw. Theory Tech., vol.67, pp1588-1600, Apr. 2019. |