博碩士論文 108621002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.148.107.74
姓名 徐儒風(Ru-Feng Hsu)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 利用WRF混成資料同化系統探討福衛七號掩星觀測對熱帶氣旋生成預報的影響
相關論文
★ 雲微物理參數化法應用於颱風模式中之研究★ 1998年臺灣梅雨個案模擬及其應用 -蘭陽平原之擴散研究
★ 地形對颱風路徑的影響之數值探討★ 中尺度MM5數值模式與大氣擴散模式之整合應用研究
★ 侵台颱風之GPS折射率3DVAR資料同化及數值模擬★ 地形及渦旋初始化對類似納莉颱風路徑及環流變化之影響
★ 類似桃芝颱風路徑之模擬★ WRF模式在颱風路徑預報應用與EOF分析誤差因素
★ 利用WRF3DVAR同化GPS折射率資料探討 對於颱風預報的影響★ 衛星資料結合變分分析對數值預報之影響
★ 利用MM5 4DVAR模式同化掩星折射率資料及虛擬渦旋探討颱風數值模擬之影響★ 利用MM5 4DVAR同化虛擬渦旋探討其對WRF模式預報颱風之影響
★ GPS掩星觀測資料同化及對區域天氣預報模擬之影響★ 西北向侵台颱風登陸前中心路徑打轉之模擬研究
★ 衛星資料與虛擬渦旋四維變分同化對颱風數值模擬的影響★ 資料同化對台灣地區颱風和梅雨模擬之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 台灣位處於西北太平洋,若可以有較好的熱帶氣旋生成以及路徑預報,對災情預警及控制會有明顯的效益。由於熱帶氣旋生於海上,因此利用洋面上的觀測資料對於氣旋預報來說是非常重要的。而福衛七號GNSS掩星觀測系統提供相當充分的海上氣象資訊,可以大幅改善模式初始場的準確度,有助於熱帶氣旋生成及路徑預報。本篇研究使用WRF Hybrid資料同化系統,對2019以及2020年在西太平洋的七個颱風(利奇馬、米塔、哈吉貝、哈隆、哈格比、梅莎以及海神)進行模擬分析,從觀測生成時間的72小時前開始,分別進行同化GNSS RO加上GTS傳統觀測資料(為WR實驗)以及只同化GTS資料(為NR實驗)共120小時預報,探討同化GNSS RO折射率資料對氣旋生成預報的影響,同時挑選同化效益明顯的個案進行分析,進一步了解其中造成預報差異的動力因素。
模擬結果顯示在WR實驗,雖然在氣旋生成時間的平均誤差並無顯著改善,但氣旋生成位置誤差減少8.9公里,且被成功檢測出來的生成個數也較NR實驗多一些。氣旋生成時間誤差 介於24至48小時之間的改善較為明顯,且生成位置誤差亦較NR實驗小。在敏感度測試實驗上,顯示使用預報中心的作業實驗組有較好的表現,尤其是在使用分析場blending之後,使氣旋生成時間誤差改善3.6小時,而生成位置誤差改善93.9公里。針對利奇馬、哈吉貝以及梅莎颱風,使用最新估計的背景誤差時,整體來說模擬結果會變差,但若停用掩星資料稀化則模擬結果會變好。進一步分析同化效益明顯的個案(米塔與哈格比),在12小時同化後的模式水氣增加,特別在中低層水氣呈現較大的增量,有助提升潛熱釋放效率。雖然掩星資料同化只直接影響到水氣以及溫度場,經由動力過程,也會改變風速以及渦度場,改善兩個案氣旋生成的掌握能力。由位渦收支分析證實,非絕熱加熱增加,增加正位渦趨勢,使垂直運動加強,同時也增加位渦垂直平流,促進氣旋的生成。
摘要(英) Taiwan is located at north-western Pacific and is affected by typhoons often in the summer season. Accurate predictions of tropical cyclogenesis and track will be helpful for the disaster preparedness. Since tropical cyclones form over oceans, it is important to make use of the observations over oceans. FORMOSAT-7 radio occultation provides high-resolution observations over lands and oceans, which can improve the accuracy of initial conditions, and is helpful for predicting tropical cyclogenesis and track forecast. In this thesis, WRF hybrid data assimilation system has been used to assimilate seven typhoon cases in 2019 and 2020 (Lekima, Mitag, Hagibis, Hagupit, Halong, Hagupit, Maysak and Haishen). The experiments start 72 hours before observed cyclogenesis time, with the experiment that assimilates both GTS and RO data (WR) and the other that only assimilates GTS data (NR), and both experiments are conducted for 120-h forecast. The experiment is expected to find out if the assimilation of GNSS RO reflectivity data will give positive impacts on cyclogenesis prediction, and also analyze the specific cases with larger positive impact, to understand the dynamic processes leading to the differences in forecasted cyclogenesis.
The model results show that, although the average time error is not improved significantly in the WR experiment, the average location error is reduced by 8.9 km, and the number of successful cyclogenesis detection is more than that from the NR experiment. Most of the improvement by RO assimilation is present for the time error between 24 to 48 hours that is smaller and grows slower. For sensitivity tests, the experiments with the operational ensemble prediction from CWB for the initial background has significantly larger improvement than that from the control experiment (CTL), in particular when performing the blending with the large-scale analysis, leading to a reduction on the time error by 3.6 h and location error by 93.9 km. Other sensitivity tests for Lekima, Hagibis and Maysak show that use of the updated background errors has increased the prediction error. On the other hand, the prediction is improved in time error than the CTL experiment when the default of data thinning is deactivated.
For the two specific cases (Mitag and Hagupit), water vapor mixing ratio increases after 12-h assimilation, especially in lower and middle levels helpful for latent heat release. Although RO data assimilation only changes the water vapor mixing ratio and temperature, it will also modify the wind and vorticity after the model integration. This makes the WR experiment improve the cyclogenesis prediction one day earlier than the NR experiment. Through analysis of potential vorticity budget, the increase of diabatic heating indeed enhances the positive PV tendency, and vertical motions, and thus facilitates the tropical cyclogenesis with the stronger PV vertical advection.
關鍵字(中) ★ 氣旋生成 關鍵字(英)
論文目次 中文摘要 I
英文摘要 II
致謝 IV
目錄 V
表目錄 VI
圖目錄 VII
第一章、前言 1
1-1前言 1
1-2研究目標 3
第二章、資料來源與研究方法 5
2-1 資料來源 5
2-1-1 NCEP GFS資料 5
2-1-2 GNSS RO掩星觀測資料 5
2-2 研究方法 6
2-2-1 WRF模式 6
2-2-2 同化系統 6
2-2-3 位渦收支 7
2-2-4 羅士比變形半徑 8
第三章、氣旋介紹與實驗設定 9
3-1 氣旋及實驗方法 9
3-2 生成實驗檢定 9
3-3 CWB實驗以及敏感度測試 10
第四章、實驗結果 12
4-1 CWB實驗統計結果 12
4-2 CTL實驗 13
4-2-1 統計結果 13
4-2-2 敏感度測試 14
第五章、個案分析 17
5-1 2020/07/30 06Z 哈格比颱風 17
5-1-1 分析 場和初始場 17
5-1-2 WR氣旋生成時間 18
5-1-3 預報隨時間的變化 19
5-2 2019/09/25 12Z 米塔颱風 21
5-2-1 分析場和初始場 21
5-2-2 WR氣旋生成時間 22
5-2-3 預報隨時間的變化 23
第六章、結論與未來展望 25
6-1 結論 25
6-2 未來展望 26
參考文獻 28
附表與附圖 30
參考文獻 李清勝,1988:颱風之生成和發展。大氣科學,16,237-252。
黃清勇、朱延祥,2004:FORMOSAT-3/COSMIC科學研究簡介。大氣科學,32,293-328.
黃清勇、孫于力,2017:同化虛擬位渦反演渦旋及位渦收支診斷分析:梅姬颱風(2010)。大氣科學,45,101-143。
陳珮雯,2005:斜壓雙渦旋交互作用—颱風雙眼牆結構之形成,國立台灣大學,大氣科學研究所,碩士論文
林柏旭,2011:納莉颱風(2001)之位渦收支分析,國立中央大學,大氣物理研究所,碩士論文。
趙紘,2015:利用WRF 3DVAR Hybrid資料同化系統探討GPS掩星觀測對颱風海燕及梅姬模擬之影響,國立中央大學,大氣物理研究所,碩士論文。
呂健瑜,2018:垂直風切對通過地形熱帶氣旋路徑及降雨量之影響:理想化實驗。國立中央大學,大氣物理研究所,碩士論文。
沙聖號,2020:颱風利奇馬Lekima (2019)通過臺灣的數值研究:地形對不同颱風路徑的影響,國立中央大學,大氣物理研究所,碩士論文。
Charney, J. G., and A. Eliassen, 1964: On the growth of the hurricane depression. J. Atmos. Sci., 21, 68–75.
Chen, S. S., and W. M. Frank, 1993: A numerical study of the genesis of extratropical convective mesovortices. Part I: Evolution and dynamics. J. Atmos. Sci., 50, 2401-2426.
Chen, S.-Y., T.-K. Wee, Y.-H., Kuo, Bromwich, D. H., 2014: An impact assessment of GPS radio occultation data on prediction of a rapidly developing cyclone over the Southern Ocean. Mon. Wea. Rev., 142(11), 4187– 4206.
Chen, S.Y., Y.-H. Kuo, C.-Y., Huang, 2020: The impact of GPS RO data on the prediction of tropical cyclogenesis using a nonlocal observation operator: An initial assessment. Mon. Wea. Rev., 148, 2701-2717.
Chen, S.-Y., C.-Y., Liu, C.-Y., Huang, S.-C., Hsu, H.-W., Li, P.-H., Lin, J.-P., Cheng, and C.-Y., Huang, 2021: An Analysis Study of FORMOSAT-7/COSMIC-2 Radio Occultation Data in the Troposphere. Remote Sensing., 13, 717.
Chen, S.-Y., C.-P., Shih, C.-Y., Huang, 2021: An Impact Study of GNSS RO Data on the Prediction of Typhoon Nepartak (2016) Using a Multiresolution Global Model with 3D-Hybrid Data Assimilation. Wea. Forecasting, 36, 957-977.
Cucurull, L., Y.-H., Kuo, D., Barker, S.R.H., Rizvi, 2006: Assessing the Impact of Simulated COSMIC GPS Radio Occultation Data on Weather Analysis over the Antarctic: A Case Study. Mon. Wea. Rev., 134, 3283–3296.
Doyle, J. D., C. A. Reynolds, C. Amerault, and J. Moskaitis, 2012: Adjoint sensitivity and predictability of tropical cyclogenesis. J. Atmos. Sci., 69, 3535–3557.
Dunkerton, T. J., M. T. Montgomery, and Z. Wang, 2008: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 8, 11 149–11 292.
Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585–605.
Halperin, D. J., H. E. Fuelberg, R. E. Hart, J. H. Cossuth, P. Sura, and R. J. Pasch, 2013: An evaluation of tropical cyclone genesis forecasts from global numerical models. Wea. Forecasting, 28, 1423–1445.
Hamill, T. M., and C. Snyder, 2000: A hybrid ensemble Kalman filter-3D variational analysis scheme. Mon. Wea. Rev., 128, 2905–2919.
Huang, C.-Y., Y.-H. Kuo, S.-H. Chen, and F. Vandenberghe, 2005: Improvements in typhoon forecasts with assimilated GPS occultation refractivity. Wea. Forecasting, 20, 931–953.
Huang, C.-Y., and Coauthors, 2010: Impact of GPS radio occultation data assimilation on regional weather predictions. GPS Solutions, 14, 35–49.
Kong Rong, M. Xue, C. Liu, and Y. Jung, 2021: Comparisons of hybrid En3DVar with 3DVar and EnKF for radar data assimilation: Tests with the 10 May 2010 Oklahoma tornado outbreak. Mon. Wea. Rev., 149, 21-40.
Kuo, Y.-H., T.-K. Wee, S. Sokolovskiy, C. Rocken, W. Schreiner, D. Hunt, and R. A. Anthes, 2004: Inversion and error estimation of GPS radio occultation data, J. Meteorol. Soc. Jpn., 82, 507–531.
Kuo, Y.-H., W. S. Schreiner, J. Wang, D. L. Rossiter, and Y. Zhang, 2005: Comparison of GPS radio occultation soundings with radiosondes. Geophys. Res. Lett., 32, LS5817.
Kuo, Y.-H., H. Liu, Y.-R. Guo, C.-T. Terng, and Y.-T. Lin, 2009: Impact of FORMOSAT-3/COSMIC data on typhoon and mei-yu prediction. World Scientific Press, 458–483.
Li, Z., and Z. Pu, 2014: Numerical simulations of the genesis of Typhoon Nuri (2008): Sensitivity to initial conditions and implications for the roles of intense convection and moisture conditions. Wea. Forecasting, 29, 1402–1424.
Lien, G.-Y. and Coauthors, 2021: Assimilation Impact of Early FORMOSAT-7/COSMIC-2 GNSS Radio Occultation Data with Taiwan’s CWB Global Forecast System. Mon. Wea. Rev., 149, 2171-2191.
Liu, H., J. Anderson, and Y.-H. Kuo, 2012: Improved analyses and forecasts of Hurricane Ernesto’s genesis using radio occultation data in an ensemble filter assimilation system. Mon. Wea. Rev., 140, 151–166.
Ritchie, E. A., and G. J. Holland, 1997: Scale interactions during the formation of Typhoon Irving. Mon. Wea. Rev., 125, 1377–1396.
Sippel, J. A., and F. Zhang, 2008: A probabilistic analysis of the dynamics and predictability of typhoon cyclogenesis. J. Atmos. Sci., 65, 3440–3459.
Ware, R., and Coauthors, 1996: GPS sounding of the atmosphere from low earth orbit: Preliminary results. Bull. Amer. Meteor. Soc., 77, 19-40.
Zhang Man, M. Zupanski, M.-J. Kim, J. A. Knaff, 2013: Assimilating AMSU-A radiances in the TC core area with NOAA operational HWRF (2011) and a hybrid data assimilation system: Danielle (2010). Mon. Wea. Rev., 141, 3889-3907.
指導教授 黃清勇(Ching-Yuang Huang) 審核日期 2021-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明