博碩士論文 108621601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.236.100.210
姓名 鄧東坡(Dang Dong Pha)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱
(The role of shallow convection in tropical circulation: a simple analytic approach)
相關論文
★ 熱帶太平洋對流垂直結構之觀測與模擬特徵★ 熱帶對流的水氣與能量輸送: 深-淺對流模之比較
★ 超級MJO事件之濕靜能收支分析★ 全球暖化下季風亞洲降水的變化
★ 使用HiRAM 模擬全球暖化下熱帶降水及對流的變化★ MJO對南海颱風活動之影響
★ 熱帶對流層氣溫之主要擾動有多接近對流準平衡?★ Changes of the Hadley Cell During the Last Four Decades
★ Impacts of Global Warming on a Super Madden Julian Oscillation Event in the WRF Simulation★ Changes of Tropical Tropopause in Response to Global Warming
★ 蘇門答臘島北部地區夏季年際間降水變化之機制探討★ 最後一次冰消期的南大洋動力學和上升流 :模擬研究
★ Potential Changes of Surface Latent Heat Flux over Oceans under Global Warming★ Distinct Propagating Behaviors of Madden-Julian Oscillation over Indian Ocean and Maritime Continent
★ MSE Budget Analysis of Strong and Weak MJO Events Using ERA5 and COSMIC RO Data: A Case-to-Case Comparison Study★ Madden-Julian Oscillation的大氣雲–輻射效應在全球暖化下的變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-1-1以後開放)
摘要(中) 摘要
在此研究中,我們基於第一和第二斜壓模的對流準平衡(CQE)假設,提出了垂直濕靜能(MSE)平流的近似理論。熱帶地區的兩種主要垂直運動模式分別為深、淺對流,在此理論中皆能精確地被制定出來。且此新的近似理論能夠診斷大尺度垂直濕靜能平流,其在熱帶輻合帶(ITCZ)的相關係數為0.6。此理論表明,第一斜壓模為西太平洋輻合帶的主導項,而在東太平洋輻合帶地區中第二斜壓模反而較為重要。然而,CQE近似理論無法在ITCZ以外地區再現垂直濕靜能平流的特徵。一般來說,與垂直乾靜能平流項相比,第二斜壓的貢獻主要是來自垂直水氣平流項。總體而言,該模型理論提供了有用的工具以了解深、淺對流在氣候時間尺度上分別扮演的角色。
奇異值分解(SVD)在本研究中被用以測試邊界條件(海面溫度-SST)和大氣穩定度(粗濕穩定度-M 和粗濕分層-Mq)之間的耦合關係。透過此研究發現,後者與東太平洋海溫異常(正距平)的聖嬰-南方震盪現象有強烈相關性。在聖嬰事件期間,西太平洋上空的對流以Bottom-heavy、負的淺對流結構為主。而在東太平洋上空則以Top-heavy、正的淺對流結構為主,且在此部分研究中也明顯展示出M與Mq的增加分別與第一、第二斜壓模有關。此外,SVD分解出的第二個模態顯示了全球暖化對垂直運動變化的影響。此結果表明,海表面溫度越暖的區域其Top-heavy、正的淺對流結構將會增加。
摘要(英) Abstract
In this study, we present a theoretical approximation for the vertical moist static energy (MSE) advection based on convective quasi-equilibrium (CQE) assumption corresponding to the 1st and 2nd baroclinic mode. The two major vertical motion modes in the tropics are explicitly formulated, representing the role of deep and shallow convection. The novel approximation is capable of diagnosing the large-scale pattern of vertical MSE advection with a correlation of 0.6 for the intertropical convergence zones (ITCZs). The first baroclinic mode is dominant over the Western Pacific Convergence Zone, while the second baroclinic mode is indispensable on the Eastern Pacific Convergence Zone. Outside the ITCZ, the CQE approximation fails to reproduce the vertical MSE advection. In general, the contribution of the second baroclinic is mostly accounted by the vertical moisture advection compared to the vertical dry static energy (DSE) advection. Overall, the model provides a useful tool to understand the role of deep and shallow convection on climatological time scales.
A singular value decomposition (SVD) is conducted to examine the coupled pattern between boundary conditions (sea surface temperature - SST) and atmospheric stability (gross moist stability - M and gross moist stratification - M_q). It is found that the latter is strongly correlated with El Niño-Southern Oscillation characterized by positive SST anomalies over the Eastern Pacific. During El Niño events, convection over the Western Pacific is dominated by bottom-heavy and negative shallow structures. On the eastern side, the increase in M associated with 1st mode and M_q associated with 2nd mode indicates a top-heavy and positive shallow convection. Furthermore, the second SVD modes show the impact of global warming on the vertical motion variation. The results imply that warmer SST regions tend to enhance top-heavy deep and positive shallow convection.
關鍵字(中) 關鍵字(英) ★ shallow convection
★ convective-quasi equilibrium
論文目次 Contents

摘要 i
Abstract ii
Acknowledgment iii
Contents iv
List of Figures v
Chapter 1 Introduction 1
Chapter 2 Data and Methodology 4
2.1 Data 4
2.2 Moisture, dry static, and moist static energy budget 4
2.3 Modes of tropical convection 5
2.4 Convective quasi-equilibrium assumption 7
Chapter 3 A new diagnostic model for tropical atmosphere 11
3.1 Gross moist stability 11
3.2 Energy budget analysis 11
3.3 Convective quasi-equilibrium evaluation 12
Chapter 4 Coupled variability of M and Mq 21
4.1 Singular Value Decomposition 21
4.2 Coupled patterns analysis 22
Chapter 5 Conclusion and discussion 30
Appendix 33
References 35
參考文獻 References

Back, L. E., and C. S. Bretherton, 2006: Geographic variability in the export of moist static energy and vertical motion profiles in the tropical Pacific. Geophysical Research Letters, 33.
Back, L. E., Z. Hansen, and Z. Handlos, 2017: Estimating Vertical Motion Profile Top-Heaviness: Reanalysis Compared to Satellite-Based Observations and Stratiform Rain Fraction. Journal of the Atmospheric Sciences, 74, 855-864.
Bui, H. X., J.-Y. Yu, and C. Chou, 2016: Impacts of Vertical Structure of Large-Scale Vertical Motion in Tropical Climate: Moist Static Energy Framework. Journal of the Atmospheric Sciences, 73, 4427-4437.
Chen, C.-A., J.-Y. Yu, and C. Chou, 2016: Impacts of Vertical Structure of Convection in Global Warming: The Role of Shallow Convection. Journal of Climate, 29, 4665-4684.
Chen, Y.-C., and J.-Y. Yu, 2021: Modes of tropical convection and their roles in transporting moisture and moist static energy: contrast between deep and shallow convection. Climate Dynamics.
Chou, C., and J. D. Neelin, 2004: Mechanisms of Global Warming Impacts on Regional Tropical Precipitation. Journal of Climate, 17, 2688-2701.
Chou, C., T.-C. Wu, and P.-H. Tan, 2013: Changes in gross moist stability in the tropics under global warming. Climate Dynamics, 41, 2481.
Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quarterly Journal of the Royal Meteorological Society, 106, 447-462.
Houze Jr., R. A., 1989: Observed structure of mesoscale convective systems and implications for large-scale heating. Quarterly Journal of the Royal Meteorological Society, 115, 425-461.
Houze Jr., R. A., and A. K. Betts, 1981: Convection in GATE. Reviews of Geophysics, 19, 541-576.
Khouider, B., and A. J. Majda, 2006: A Simple Multicloud Parameterization for Convectively Coupled Tropical Waves. Part I: Linear Analysis. Journal of the Atmospheric Sciences, 63, 1308-1323.
Lindzen, R. S., and S. Nigam, 1987: On the Role of Sea Surface Temperature Gradients in Forcing Low-Level Winds and Convergence in the Tropics. Journal of Atmospheric Sciences, 44, 2418-2436.
Masunaga, H., and T. S. L′Ecuyer, 2014: A Mechanism of Tropical Convection Inferred from Observed Variability in the Moist Static Energy Budget. Journal of the Atmospheric Sciences, 71, 3747-3766.
Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. Journal of the Meteorological Society of Japan. Ser. II, 44, 25-43.
Neelin, J. D., and I. M. Held, 1987: Modeling Tropical Convergence Based on the Moist Static Energy Budget. Monthly Weather Review, 115, 3-12.
Neelin, J. D., and J.-Y. Yu, 1994: Modes of Tropical Variability under Convective Adjustment and the Madden-Julian Oscillation. Part I: Analytical Theory. Journal of Atmospheric Sciences, 51, 1876-1894.
Neelin, J. D., and N. Zeng, 2000: A Quasi-Equilibrium Tropical Circulation Model-Formulation. Journal of the Atmospheric Sciences, 57, 1741-1766.
Neggers, R. A. J., J. D. Neelin, and B. Stevens, 2007: Impact Mechanisms of Shallow Cumulus Convection on Tropical Climate Dynamics. Journal of Climate, 20, 2623-2642.
Raymond, D. J., S. L. Sessions, and Ž. Fuchs, 2007: A theory for the spinup of tropical depressions. Quarterly Journal of the Royal Meteorological Society, 133, 1743-1754.
Wills, R. C., X. J. Levine, and T. Schneider, 2017: Local Energetic Constraints on Walker Circulation Strength. Journal of the Atmospheric Sciences, 74, 1907-1922.
Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of Bulk Properties of Tropical Cloud Clusters from Large-Scale Heat and Moisture Budgets. Journal of Atmospheric Sciences, 30, 611-627.
Yanai, M., J.-H. Chu, T. E. Stark, and T. Nitta, 1976: Response of Deep and Shallow Tropical Maritime Cumuli to Large-scale Processes. Journal of Atmospheric Sciences, 33, 976-991.
Yu, J.-Y., and J. D. Neelin, 1994: Modes of Tropical Variability under Convective Adjustment and the Madden-Julian Oscillation. Part II: Numerical Results. Journal of Atmospheric Sciences, 51, 1895-1914.
——, 1997: Analytic Approximations for Moist Convectively Adjusted Regions. Journal of the Atmospheric Sciences, 54, 1054-1063.
Yu, J.-Y., C. Chou, and J. D. Neelin, 1998: Estimating the Gross Moist Stability of the Tropical Atmosphere. Journal of the Atmospheric Sciences, 55, 1354-1372.
指導教授 余嘉裕(Jia-Yuh Yu) 審核日期 2022-1-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明