參考文獻 |
AGI (2009). Instruction manual for EarthImager 2D, Version 2.4. 0, Advanced Geosciences, Inc., Austin, Texas, USA.
Archie, G. E. (1942). The electrical resistivity log as an aid in determining some reservoir characteristics, Transactions of the AIME, 146, 54-62, doi:10.2118/942054-G.
Bishop, A. W. (1960). The principle of effective stress, Norw. Geotech. Inst. Publ.
Cassiani, G., Boaga, J., Vanella, D., Perri, M. T., and Consoli, S. (2015). Monitoring and modelling of soil-plant interactions: the joint use of ERT, sap flow and eddy covariance data to characterize the volume of an orange tree root zone. Hydrol. Earth Syst. Sci. 19(5), 2213-2225. doi: 10.5194/hess-19-2213-2015.
Chambers, J., P. Meldrum, D. Gunn, P. Wilkinson, O. Kuras, A. Weller, and R. Ogilvy (2009). Hydrogeophysical monitoring of landslide processes using automated time-lapse electrical resistivity tomography (ALERT), paper presented at Near Surface 2009-15th EAGE European Meeting of Environmental and Engineering Geophysics, European Association of Geoscientists & Engineers.
Chambers, J. E., Wilkinson, P. B., Weller, A. L., Meldrum, P. I., Gilvy, R. D., and Caunt, S. (2007). Mineshaft imaging using surface and crosshole 3D electrical resistivity tomography: A case history from the East Pennine Coalfield, UK. J. Appl. Geophys. 62, 324-337. doi: 10.1016/j.jappgeo.2007.03.004.
Chiang, C. W., Chen, C. C., Unsworth, M., Bertrand, E., Chen, C. S., Kieu, T. D., and Hsu, H. L. (2010). The deep electrical structure of southern Taiwan and its tectonic implications. Terr. Atmos. Ocean. Sci. 21(6), 879-895, doi: 10.3319/tao.2010.02.25.01(T).
Chiang, C. W., Goto, T., Mikada, H., Chen, C. C., and Hsu, S. K. (2012). Sensitivity of Deep-Towed Marine Electrical Resistivity Imaging Using Two-Dimensional Inversion: A Case Study on Methane Hydrate. Terr. Atmos. Ocean. Sci. 23(6), 725-732, doi: 10.3319/TAO.2012.06.19.01(T).
Chiang, C. W., Hsu, H. L., and Chen, C. C. (2015). An investigation of the 3D electrical resistivity structure in the Chingshui geothermal area. NE Taiwan. Terr. Atmos. Ocean. Sci. 26(3), 269-281, doi: doi.org/10.3319/TAO.2014.12.09.01(T).
Clement, R., S. Moreau, H. Henine, A. Guerin, C. Chaumont, and J. Tournebize (2014). On the value of combining surface and cross-borehole ERT measurements to study artificial tile drainage processes, Near Surface Geophysics, 12(6), 765-779, doi:10.3997/1873-0604.2014034.
Constable, S. C., R. L. Parker, and C. G. J. G. Constable (1987). Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data, Geophysics, 52(3), 289-300.
Crosta, G. (1998). Regionalization of rainfall thresholds: an aid to landslide hazard evaluation. Environ. Geol. 35(2-3), 131-145. doi: 10.1007/s002540050300.
Dai, F. C., and Lee, C. F. (2002). Landslide characteristics and, slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42(3-4), 213-228. doi: 10.1016/s0169-555x(01)00087-3.
Daily, W., Ramirez, A., Labrecque, D., and Nitao, J. (1992). Electrical-resistivity tomography of vadose water-movement. Water Resour. Res. 28, 1429-1442. doi: 10.1029/91wr03087.
Descloitres, M., Ruiz, L., Sekhar, M., Legchenko, A., Braun, J. J., Kumar, M. S. M., and Subramanian, S. (2008). Characterization of seasonal local recharge using electrical resistivity tomography and magnetic resonance sounding. Hydrol. Process. 22, 384-394. doi: 10.1002/hyp.6608.
Duan, Q.Y., Sorooshian, S., and Gupta, V.K. (1994). Optimal use of the sce-ua global optimization method for calibrating watershed models. J. Hydrol. 158(3-4), 265-284. doi: 10.1016/0022-1694(94)90057-4.
Guzzetti, F., Peruccacci, S., Rossi, M., and Stark, C. P. (2007). Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol. Atmospheric Phys. 98, 239-267. doi: 10.1007/s00703-007-0262-7.
Hall, R. (2002). Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. J. Asian Earth Sci. 20(4), 353-431. doi: 10.1016/s1367-9120(01)00069-4.
Ho, C. S. (1986). A synthesis of the geologic evolution of Taiwan. Tectonophysics, 125, 1-16, doi: 10.1016/0040-1951(86)90004-1.
Huang, A. B., Lee, J. T., Ho, Y. T., Chiu, Y. F., Cheng, S. Y., (2012). Stability monitoring of rainfall-induced deep landslides through pore pressure profile measurements, Soils and Foundations, 52(4), 737-747.
Hungr, O., S. Leroueil, and L. Picarelli (2014). The Varnes classification of landslide types, an update, Landslides, 11(2), 167-194, doi:10.1007/s10346-013-0436-y.
Iverson, R. M. (2000). Landslide triggering by rain infiltration. Water Resour. Res. 36, 1897-1910. doi: 10.1029/2000WR900090.
Jongmans, D., and Garambois, S. (2007). Geophysical investigation of landslides : a review. Bull. Soc. géol. Fr., 178(2), 101-112. doi:10.2113/gssgfbull.178.2.101.
Kornei, K. (2019). A massive experiment in Taiwan aims to reveal landslides’ surprising effect on the climate. Science. doi: 10.1126/science.aba2653.
Kuo, C. Y., Lin, S. E., Chen, R. F., Hsu, Y. J., Chang, K. J., Lee, S. P., Wu, R. Y., Lin, C. W., Chan, Y. H., (2021). Occurences of deep-seated creeping landslides in accordance with hydrological water storages in catchments, submitted.
Kuras, O., Pritchard, J. D., Meldrum, P. I., Chambers, J. E., Wilkinson, P. B., Ogilvy, R. D., and Wealthall, G. P. J. C. R. G. (2009). Monitoring hydraulic processes with automated time-lapse electrical resistivity tomography (ALERT). C. R. Geosci. 341(10-11), 868-885. doi: 10.1016/j.crte.2009.07.010.
Lin, M. L., Chena, T. W., and Hsia, K. C. (2017). Evolution and stability analysis of a deep-seated landslide in Lantai area, Taiwan. Geotechnical Hazard Mitigations: Experiment, Theory and Practice-Proceedings of the 5th International Conference on Geotechnical Engineering for Disaster Mitigation and Rehabilitation, 391-402. doi: 10.6140/9789864371419.201710.0034
Maillol, J. M., Seguin, M. K., Gupta, O. P., Akhauri, H. M., and Sen, N. (1999). Electrical resistivity tomography survey for delineating uncharted mine galleries in West Bengal, India. Geophys. Prospect. 47, 103-116. doi: 10.1046/j.1365-2478.1999.00126.x.
Melillo, M., Brunetti, M., Peruccacci, S., Gariano, S., and Guzzetti, F. (2015). An algorithm for the objective reconstruction of rainfall events responsible for landslides. Landslides 12. doi: 10.1007/s10346-014-0471-3.
Morgenstern, N.R., Price, V.E., (1965). The analysis of the stability of general slip surfaces. Geotechnique 15 (1), 79-93. doi: 10.1680/geot.1965.15.1.79.
Muller, K., Vanderborght, J., Englert, A., Kemna, A., Huisman, J. A., Rings, J., and Vereecken, H. (2010). Imaging and characterization of solute transport during two tracer tests in a shallow aquifer using electrical resistivity tomography and multilevel groundwater samplers. Water Resour. Res. 46, 23. doi: 10.1029/2008wr007595.
Nash, J. E. (1957). The form of the instantaneous unit hydrograph. Int. Ass. Sci. Hydrol. 3, 114-121.
Oldenborger, G. A., Knoll, M. D., Routh, P. S., and LaBrecque, D. J. (2007). Time-lapse ERT monitoring of an injection/withdrawal experiment in a shallow unconfined aquifer. Geophysics 72(4), F177-F187. doi: 10.1190/1.2734365.
Palis, E., Lebourg, T., Vidal, M., Levy, C., Tric, E., and Hernandez, M. (2017). Multiyear time-lapse ERT to study short- and long-term landslide hydrological dynamics. Landslides 14, 1333-1343. doi: 10.1007/s10346-016-0791-6.
Perrone, A., Lapenna, V., and Piscitelli, S. (2014). Electrical resistivity tomography technique for landslide investigation: A review, Earth-Sci. Rev. 135, 65-82. doi: 10.1016/j.earscirev.2014.04.002.
Petley, D. N., Mantovani, F., Bulmer,M. H., and Zannoni, A., (2005). The use of surfacemonitoring data for the interpretation of landslide movement patterns. Geomorphology 66, 133–147. doi: 10.1016/j.geomorph.2004.09.011.
Rustanto, A., Booij, M.J., Wosten, H., and Hoekstra, A.Y. (2017). Application and recalibration of soil water retention pedotransfer functions in a tropical upstream catchment: case study in Bengawan Solo, Indonesia. J. Hydrol. Hydromech. 65(3), 307-320. doi: 10.1515/johh-2017-0020.
Segoni, S., Piciullo, L., and Gariano, S. L. (2018). A review of the recent literature on rainfall thresholds for landslide occurrence. Landslides 15. doi: 10.1007/s10346-018-0966-4.
Siripunvaraporn, W., G. Egbert, Y. Lenbury, and M. Uyeshima (2005). Three-dimensional magnetotelluric inversion: data-space method, Physics of the Earth and Planetary Interiors, 150(1-3), 3-14.
Sugawara, M. (1961). On the analysis of runoff structure about several Japanese rivers, Japanese J. Geophysics, 2, 210-216.
Suppe, J. (1981). Mechanics of mountain-building and metamorphism in Taiwan. Mem. Geol. Soc. China, 4, 67-89.
Szalai, S., and L. Szarka (2008). On the classification of surface geoelectric arrays, Geophys. Prospect., 56(2), 159-175, doi:10.1111/j.1365-2478.2007.00673.x.
Szalai, S., K. Szokoli, E. Pracser, M. Metwaly, M. Zubair, and L. Szarka (2020). An alternative way in electrical resistivity prospection: the quasi-null arrays, Geophysical Journal International, 220(3), 1463-1480, doi:10.1093/gji/ggz518.
Tang, J. T., Zhang, J. F., Feng, B., Lin, J. Y., and Liu, C. S. (2007). Determination of borders for resistive oil and gas reservoirs by deviation rate using the hole-to-surface resistivity method. Chinese J. Geophysics-Chinese Ed. 50, 926-931. doi: 10.1002/cjg2.1094.
Tsou, C. Y., Z. Y. Feng, and M. Chigira (2011). Catastrophic landslide induced by Typhoon Morakot, Shiaolin, Taiwan, Geomorphology, 127(3-4), 166-178, doi:10.1016/j.geomorph.2010.12.013.
Wu, C. C., and Y. H. Kuo (1999). Typhoons affecting Taiwan: Current understanding and future challenges, Bull. Amer. Meteorol. Soc., 80(1), 67-80, doi:10.1175/1520-0477(1999)080<0067:Tatcua>2.0.Co;2.
Yeh, H. F., Lin, H. I., Wu, C. S., Hsu, K. C., Lee, J. W., and Lee, C. H. (2015). Electrical resistivity tomography applied to groundwater aquifer at downstream of Chih-Ben Creek basin, Taiwan. Environ. Earth Sci. 73, 4681-4687. doi: 10.1007/s12665-014-3752-1.
Zhang, G., Lu, Q. T., Zhang, G. B., Lin, P. R., Jia, Z. Y., and Suo, K. (2018). Joint Interpretation of Geological, Magnetic, AMT, and ERT Data for Mineral Exploration in the Northeast of Inner Mongolia, China. Pure Appl. Geophys. 175, 989-1002. doi: 10.1007/s00024-017-1733-5.
Zhang, G., Zhang, G. B., Chen, C. C., Chang, P. Y., Wang, T. P., Yen, H. Y., Dong, J. J., Ni, C. F., Chen, S. C., Chen, C. W., and Jia, Z. Y. (2016). Imaging Rainfall Infiltration Processes with the Time-Lapse Electrical Resistivity Imaging Method. Pure Appl. Geophys. 173, 2227-2239. doi: 10.1007/s00024-016-1251-x.
王國隆、林美聆、倪春發、陳建志、陳柔妃、陳宏宇、陳昭維、郭志禹、張國楨、許雅儒、黃信樺、謝佑明,蘭台大規模崩塌潛勢示範區觀測科技整合與分析期末報告書,行政院農業委員會水土保持局,2018年。
王國隆、林美聆、倪春發、陳建志、陳柔妃、陳宏宇、陳昭維、郭志禹、張國楨、許雅儒、黃信樺、謝佑明,蘭台大規模崩塌潛勢示範區觀測科技整合與分析期末報告書,行政院農業委員會水土保持局,2020年。
朱佾蓁,利用地電阻影像法計算水文地質參數:以屏東平原為例,碩士論文,國立中央大學,碩士論文,2020年。
吳秉昀,地電阻影像法於海岸生物礁調查之研究-以桃園觀音區為例,國立中央大學,碩士論文,2017 年。
林啟文與林偉雄,五萬分之一地質圖-三星圖幅,第十五號,中央地質調查所,1995年。
林聖恩、詹雅馨、郭志禹、陳柔妃、許雅儒、張國楨、李心平、吳若穎、林慶偉,集水區水理模式應用於深層潛移山崩發生時序探討,中華水土保持學報,第四十八卷第四期,153-162頁,2017年。
林慶偉、陳柔妃、陳宏宇、許雅儒、郭志禹、陳建志、林美聆、王國隆,大規模崩塌多元多尺度綜合監測、資料綜整分析與滑動機制研究:以太平山蘭台地區為例(III),科技部專題研究計畫,2017年。
夏國強,蘭台地區坡地崩塌演化與破壞機制分析,國立台灣大學,碩士論文,2016年。
許芳鳴,以地電阻影像法探討地滑敏感區電阻率構造與環境因子之關係,國立中央大學,碩士論文,2015 年。
陳文福、李毅宏、吳輝龍,結合地文與降雨條件以判定土石流發生之研究-以陳有蘭溪集水區為例,臺灣地理資訊學刊,第二期,27-44頁,2005年。
陳振宇、劉維則、許家祥,使用QPESUMS雨量資料建立崩塌災害預警模式,中華水土保持學報,第四十八期第一卷,44-55頁,2017年。
曾長生,宜蘭縣清水及土場區地質及地熱產狀,台灣石油地質,第十五號,205-214頁,1978年。
曾耀賢,蘭台地區之演化與破壞機制分析,國立臺灣大學,碩士論文,2019年。
黃至用,宜專一線公路蘭台苗圃地區地滑案之研究,國立宜蘭大學,碩士論文,2011年。
劉艶輝、唐燦、李鐵鋒、溫銘生、連建發,地質災害與降雨雨型的關係研究,工程地質學報,第十七期第五卷,656-661頁,2009年。
蔡政霖,降雨及地文條件與土石流出量關係之研究,國立中興大學,碩士論文,2010年。 |