博碩士論文 108622015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.17.156.114
姓名 蔡武男(Wu-Nan Tsai)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 電阻率變化與降雨間關係及其對於山崩的影響:以宜蘭太平山蘭台地區為例
(Relationships between Variations in Electrical Resistivity and Precipitation and Their Implications for Landslides: Case Study in the Lantai area, Ilan Taiping Mountain, Northeast Taiwan)
相關論文
★ 利用RTL (Region-Time-Length) 演算法 探討921 集集大地震之前兆現象★ 集集餘震b值與碎形維度分析
★ 應用太空大地測量法探討台南地區之地表變形★ 電容耦合地電阻探測系統應用於地下管線與坑道之研究
★ 以交叉對比分析地震的時空分佈行態★ 利用PI方法研究地震前兆活動
★ 臺灣深部電性構造及其板塊構造意義★ 利用Pattern Informatics研究1999年台灣集集與2008年中國汶川地震之前兆現象
★ 模擬地震前兆行為之數值模型★ 地電法於地下掩埋物調查之研究
★ 利用經驗模態分解法(EMD)探討潮汐效應對地震活動的影響★ 利用LURR方法探討臺灣1994年後大地震之前兆現象
★ 利用遠距沙堆模型探討特徵地震之準週期性★ 台灣天然電磁場觀測研究
★ 一維滑塊模型事件叢集特性分析與復發時間統計★ TCDP井下地震儀之微地震紀錄的特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 大部份的山崩災害常與地表崩積土層或地下岩層的水飽和率有密切的聯結,且降雨也是個影響山崩災害的重要因素。藉由地球物理方法中的地電阻影像法,在長時間且穩定的監測中可以更了解現地的土壤或岩石隨時間變化的過程,並結合Archie’s Law以連結材料的電阻率與含水量之關係。
因此本研究利用時序地電阻影像法於台灣宜蘭太平山蘭台地區的山崩潛勢區域進行監測,並呈現地下材料的相對水飽和度隨時間的改變。本地電阻影像法測量使用一全自動的遠端地電阻量測系統(R2MS),並採用非傳統的混編陣列每日定時蒐集電阻資料,本研究據此分析了自2019年至2021年於宜蘭太平山蘭台地區的監測資料。透過長期且穩定的地電阻監測,觀察到降雨事件對於地下電阻率結構的改變。結合岩心資料與電性結構進一步將電阻率影像進行分區,並對每個區域之電阻率取其中位數來代表該區域電阻率變化趨勢,細化在不同時間、空間尺度的地下電阻率結構探討。
對於不同的地質材料雨水滲透至地下需要的時間也不同,對應時段的降雨不會立即造成地底深處的電阻率改變,因此本研究將降雨劃分為數段雨場以利分析並挑選出四個示範案例。這些案例之電阻率剖面隨降雨的變化可能與本研究區域的相對水飽和度變化有關,並且暗示著降雨入滲的過程。本研究也觀察到伴隨滑動事件出現的電阻率上升和下降層位。由此可知,高頻率施測的時序地電阻影像法能提供豐富的地下資訊,期望未來能在山崩預警系統中扮演重要的角色。
摘要(英) Water saturation in the bedrock or colluvium is highly related to most landslide hazards, and rainfall is likely a crucial factor. The dynamic processes of onsite rock/soil mechanics could be revealed via monitoring using the electrical resistivity tomography (ERT) technique and Archie’s law. This study aims to demonstrate water saturation changes over time using time-lapse electrical resistivity images, providing a powerful method for monitoring landslide events. A fully automatic remote resistivity monitoring system was deployed to acquire hourly electrical resistivity data using a nontraditional hybrid array in the Lantai area of Ilan Taiping Mountain in Northeast Taiwan from 2019 to 2021. Six subzones in the borehole ERT images and a drill core were combined to examine the resistivity variations on temporal and spatial scales, as well as possible pathways of the groundwater. Two representative cases of inverted electrical resistivity images varying with precipitation may be correlated with water saturation changes in the studied hillslope, implying the process of rainfall infiltration. The electrical-resistivity-decreased and increased layers are also observed to be accompanying with sliding events. Accordingly, we suggest that high-frequency time-lapse ERT monitoring could play a crucial role in landslide alerts.
關鍵字(中) ★ 電阻率變化
★ 地電阻影像法
★ 山崩監測
★ 降雨
★ 雨場
★ 水飽和度
關鍵字(英)
論文目次 摘要 v
Abstract vi
誌謝 vii
目錄 viii
圖目錄 x
表目錄 xii
第一章、 緒論 1
1.1 研究動機與目的 1
1.2 前人研究 2
1.3 研究區域概述 4
第二章、 研究原理與方法 7
2.1 地電阻影像法簡介 7
2.2 儀器簡介 10
2.3 電極陣列配置 11
2.4 相對飽和度計算 12
2.5 雨場劃分 13
2.6 地下水壓量測與水筒模式 13
第三章、 地電阻資料處理說明 23
3.1 原始資料處理 23
3.2 資料篩選 24
3.2.1 篩選流程說明 24
3.2.2 品質參數計算公式比較 25
3.3 電阻率剖面逆推 26
3.3.1 逆推理論 27
3.3.2 中位數電阻率剖面計算流程 28
第四章、 研究結果 32
4.1 電阻率剖面對應岩心資料 32
4.2 電阻率剖面分區討論 33
4.3 雨場個案分析 34
4.3.1 長延時降雨 35
4.3.2 短延時降雨 36
第五章、 討論與結論 49
5.1 水筒模式與中位數電阻率 49
5.2 滑移事件與電阻率變化 50
5.3 滑移事件電阻率變化之順推模擬 51
5.4 結論 51
參考文獻 60
附錄A 各雨場中位數電阻率時序圖及RWS剖面 67
參考文獻 AGI (2009). Instruction manual for EarthImager 2D, Version 2.4. 0, Advanced Geosciences, Inc., Austin, Texas, USA.
Archie, G. E. (1942). The electrical resistivity log as an aid in determining some reservoir characteristics, Transactions of the AIME, 146, 54-62, doi:10.2118/942054-G.
Bishop, A. W. (1960). The principle of effective stress, Norw. Geotech. Inst. Publ.
Cassiani, G., Boaga, J., Vanella, D., Perri, M. T., and Consoli, S. (2015). Monitoring and modelling of soil-plant interactions: the joint use of ERT, sap flow and eddy covariance data to characterize the volume of an orange tree root zone. Hydrol. Earth Syst. Sci. 19(5), 2213-2225. doi: 10.5194/hess-19-2213-2015.
Chambers, J., P. Meldrum, D. Gunn, P. Wilkinson, O. Kuras, A. Weller, and R. Ogilvy (2009). Hydrogeophysical monitoring of landslide processes using automated time-lapse electrical resistivity tomography (ALERT), paper presented at Near Surface 2009-15th EAGE European Meeting of Environmental and Engineering Geophysics, European Association of Geoscientists & Engineers.
Chambers, J. E., Wilkinson, P. B., Weller, A. L., Meldrum, P. I., Gilvy, R. D., and Caunt, S. (2007). Mineshaft imaging using surface and crosshole 3D electrical resistivity tomography: A case history from the East Pennine Coalfield, UK. J. Appl. Geophys. 62, 324-337. doi: 10.1016/j.jappgeo.2007.03.004.
Chiang, C. W., Chen, C. C., Unsworth, M., Bertrand, E., Chen, C. S., Kieu, T. D., and Hsu, H. L. (2010). The deep electrical structure of southern Taiwan and its tectonic implications. Terr. Atmos. Ocean. Sci. 21(6), 879-895, doi: 10.3319/tao.2010.02.25.01(T).
Chiang, C. W., Goto, T., Mikada, H., Chen, C. C., and Hsu, S. K. (2012). Sensitivity of Deep-Towed Marine Electrical Resistivity Imaging Using Two-Dimensional Inversion: A Case Study on Methane Hydrate. Terr. Atmos. Ocean. Sci. 23(6), 725-732, doi: 10.3319/TAO.2012.06.19.01(T).
Chiang, C. W., Hsu, H. L., and Chen, C. C. (2015). An investigation of the 3D electrical resistivity structure in the Chingshui geothermal area. NE Taiwan. Terr. Atmos. Ocean. Sci. 26(3), 269-281, doi: doi.org/10.3319/TAO.2014.12.09.01(T).
Clement, R., S. Moreau, H. Henine, A. Guerin, C. Chaumont, and J. Tournebize (2014). On the value of combining surface and cross-borehole ERT measurements to study artificial tile drainage processes, Near Surface Geophysics, 12(6), 765-779, doi:10.3997/1873-0604.2014034.
Constable, S. C., R. L. Parker, and C. G. J. G. Constable (1987). Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data, Geophysics, 52(3), 289-300.
Crosta, G. (1998). Regionalization of rainfall thresholds: an aid to landslide hazard evaluation. Environ. Geol. 35(2-3), 131-145. doi: 10.1007/s002540050300.
Dai, F. C., and Lee, C. F. (2002). Landslide characteristics and, slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42(3-4), 213-228. doi: 10.1016/s0169-555x(01)00087-3.
Daily, W., Ramirez, A., Labrecque, D., and Nitao, J. (1992). Electrical-resistivity tomography of vadose water-movement. Water Resour. Res. 28, 1429-1442. doi: 10.1029/91wr03087.
Descloitres, M., Ruiz, L., Sekhar, M., Legchenko, A., Braun, J. J., Kumar, M. S. M., and Subramanian, S. (2008). Characterization of seasonal local recharge using electrical resistivity tomography and magnetic resonance sounding. Hydrol. Process. 22, 384-394. doi: 10.1002/hyp.6608.
Duan, Q.Y., Sorooshian, S., and Gupta, V.K. (1994). Optimal use of the sce-ua global optimization method for calibrating watershed models. J. Hydrol. 158(3-4), 265-284. doi: 10.1016/0022-1694(94)90057-4.
Guzzetti, F., Peruccacci, S., Rossi, M., and Stark, C. P. (2007). Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol. Atmospheric Phys. 98, 239-267. doi: 10.1007/s00703-007-0262-7.
Hall, R. (2002). Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. J. Asian Earth Sci. 20(4), 353-431. doi: 10.1016/s1367-9120(01)00069-4.
Ho, C. S. (1986). A synthesis of the geologic evolution of Taiwan. Tectonophysics, 125, 1-16, doi: 10.1016/0040-1951(86)90004-1.
Huang, A. B., Lee, J. T., Ho, Y. T., Chiu, Y. F., Cheng, S. Y., (2012). Stability monitoring of rainfall-induced deep landslides through pore pressure profile measurements, Soils and Foundations, 52(4), 737-747.
Hungr, O., S. Leroueil, and L. Picarelli (2014). The Varnes classification of landslide types, an update, Landslides, 11(2), 167-194, doi:10.1007/s10346-013-0436-y.
Iverson, R. M. (2000). Landslide triggering by rain infiltration. Water Resour. Res. 36, 1897-1910. doi: 10.1029/2000WR900090.
Jongmans, D., and Garambois, S. (2007). Geophysical investigation of landslides : a review. Bull. Soc. géol. Fr., 178(2), 101-112. doi:10.2113/gssgfbull.178.2.101.
Kornei, K. (2019). A massive experiment in Taiwan aims to reveal landslides’ surprising effect on the climate. Science. doi: 10.1126/science.aba2653.
Kuo, C. Y., Lin, S. E., Chen, R. F., Hsu, Y. J., Chang, K. J., Lee, S. P., Wu, R. Y., Lin, C. W., Chan, Y. H., (2021). Occurences of deep-seated creeping landslides in accordance with hydrological water storages in catchments, submitted.
Kuras, O., Pritchard, J. D., Meldrum, P. I., Chambers, J. E., Wilkinson, P. B., Ogilvy, R. D., and Wealthall, G. P. J. C. R. G. (2009). Monitoring hydraulic processes with automated time-lapse electrical resistivity tomography (ALERT). C. R. Geosci. 341(10-11), 868-885. doi: 10.1016/j.crte.2009.07.010.
Lin, M. L., Chena, T. W., and Hsia, K. C. (2017). Evolution and stability analysis of a deep-seated landslide in Lantai area, Taiwan. Geotechnical Hazard Mitigations: Experiment, Theory and Practice-Proceedings of the 5th International Conference on Geotechnical Engineering for Disaster Mitigation and Rehabilitation, 391-402. doi: 10.6140/9789864371419.201710.0034
Maillol, J. M., Seguin, M. K., Gupta, O. P., Akhauri, H. M., and Sen, N. (1999). Electrical resistivity tomography survey for delineating uncharted mine galleries in West Bengal, India. Geophys. Prospect. 47, 103-116. doi: 10.1046/j.1365-2478.1999.00126.x.
Melillo, M., Brunetti, M., Peruccacci, S., Gariano, S., and Guzzetti, F. (2015). An algorithm for the objective reconstruction of rainfall events responsible for landslides. Landslides 12. doi: 10.1007/s10346-014-0471-3.
Morgenstern, N.R., Price, V.E., (1965). The analysis of the stability of general slip surfaces. Geotechnique 15 (1), 79-93. doi: 10.1680/geot.1965.15.1.79.
Muller, K., Vanderborght, J., Englert, A., Kemna, A., Huisman, J. A., Rings, J., and Vereecken, H. (2010). Imaging and characterization of solute transport during two tracer tests in a shallow aquifer using electrical resistivity tomography and multilevel groundwater samplers. Water Resour. Res. 46, 23. doi: 10.1029/2008wr007595.
Nash, J. E. (1957). The form of the instantaneous unit hydrograph. Int. Ass. Sci. Hydrol. 3, 114-121.
Oldenborger, G. A., Knoll, M. D., Routh, P. S., and LaBrecque, D. J. (2007). Time-lapse ERT monitoring of an injection/withdrawal experiment in a shallow unconfined aquifer. Geophysics 72(4), F177-F187. doi: 10.1190/1.2734365.
Palis, E., Lebourg, T., Vidal, M., Levy, C., Tric, E., and Hernandez, M. (2017). Multiyear time-lapse ERT to study short- and long-term landslide hydrological dynamics. Landslides 14, 1333-1343. doi: 10.1007/s10346-016-0791-6.
Perrone, A., Lapenna, V., and Piscitelli, S. (2014). Electrical resistivity tomography technique for landslide investigation: A review, Earth-Sci. Rev. 135, 65-82. doi: 10.1016/j.earscirev.2014.04.002.
Petley, D. N., Mantovani, F., Bulmer,M. H., and Zannoni, A., (2005). The use of surfacemonitoring data for the interpretation of landslide movement patterns. Geomorphology 66, 133–147. doi: 10.1016/j.geomorph.2004.09.011.
Rustanto, A., Booij, M.J., Wosten, H., and Hoekstra, A.Y. (2017). Application and recalibration of soil water retention pedotransfer functions in a tropical upstream catchment: case study in Bengawan Solo, Indonesia. J. Hydrol. Hydromech. 65(3), 307-320. doi: 10.1515/johh-2017-0020.
Segoni, S., Piciullo, L., and Gariano, S. L. (2018). A review of the recent literature on rainfall thresholds for landslide occurrence. Landslides 15. doi: 10.1007/s10346-018-0966-4.
Siripunvaraporn, W., G. Egbert, Y. Lenbury, and M. Uyeshima (2005). Three-dimensional magnetotelluric inversion: data-space method, Physics of the Earth and Planetary Interiors, 150(1-3), 3-14.
Sugawara, M. (1961). On the analysis of runoff structure about several Japanese rivers, Japanese J. Geophysics, 2, 210-216.
Suppe, J. (1981). Mechanics of mountain-building and metamorphism in Taiwan. Mem. Geol. Soc. China, 4, 67-89.
Szalai, S., and L. Szarka (2008). On the classification of surface geoelectric arrays, Geophys. Prospect., 56(2), 159-175, doi:10.1111/j.1365-2478.2007.00673.x.
Szalai, S., K. Szokoli, E. Pracser, M. Metwaly, M. Zubair, and L. Szarka (2020). An alternative way in electrical resistivity prospection: the quasi-null arrays, Geophysical Journal International, 220(3), 1463-1480, doi:10.1093/gji/ggz518.
Tang, J. T., Zhang, J. F., Feng, B., Lin, J. Y., and Liu, C. S. (2007). Determination of borders for resistive oil and gas reservoirs by deviation rate using the hole-to-surface resistivity method. Chinese J. Geophysics-Chinese Ed. 50, 926-931. doi: 10.1002/cjg2.1094.
Tsou, C. Y., Z. Y. Feng, and M. Chigira (2011). Catastrophic landslide induced by Typhoon Morakot, Shiaolin, Taiwan, Geomorphology, 127(3-4), 166-178, doi:10.1016/j.geomorph.2010.12.013.
Wu, C. C., and Y. H. Kuo (1999). Typhoons affecting Taiwan: Current understanding and future challenges, Bull. Amer. Meteorol. Soc., 80(1), 67-80, doi:10.1175/1520-0477(1999)080<0067:Tatcua>2.0.Co;2.
Yeh, H. F., Lin, H. I., Wu, C. S., Hsu, K. C., Lee, J. W., and Lee, C. H. (2015). Electrical resistivity tomography applied to groundwater aquifer at downstream of Chih-Ben Creek basin, Taiwan. Environ. Earth Sci. 73, 4681-4687. doi: 10.1007/s12665-014-3752-1.
Zhang, G., Lu, Q. T., Zhang, G. B., Lin, P. R., Jia, Z. Y., and Suo, K. (2018). Joint Interpretation of Geological, Magnetic, AMT, and ERT Data for Mineral Exploration in the Northeast of Inner Mongolia, China. Pure Appl. Geophys. 175, 989-1002. doi: 10.1007/s00024-017-1733-5.
Zhang, G., Zhang, G. B., Chen, C. C., Chang, P. Y., Wang, T. P., Yen, H. Y., Dong, J. J., Ni, C. F., Chen, S. C., Chen, C. W., and Jia, Z. Y. (2016). Imaging Rainfall Infiltration Processes with the Time-Lapse Electrical Resistivity Imaging Method. Pure Appl. Geophys. 173, 2227-2239. doi: 10.1007/s00024-016-1251-x.
王國隆、林美聆、倪春發、陳建志、陳柔妃、陳宏宇、陳昭維、郭志禹、張國楨、許雅儒、黃信樺、謝佑明,蘭台大規模崩塌潛勢示範區觀測科技整合與分析期末報告書,行政院農業委員會水土保持局,2018年。
王國隆、林美聆、倪春發、陳建志、陳柔妃、陳宏宇、陳昭維、郭志禹、張國楨、許雅儒、黃信樺、謝佑明,蘭台大規模崩塌潛勢示範區觀測科技整合與分析期末報告書,行政院農業委員會水土保持局,2020年。
朱佾蓁,利用地電阻影像法計算水文地質參數:以屏東平原為例,碩士論文,國立中央大學,碩士論文,2020年。
吳秉昀,地電阻影像法於海岸生物礁調查之研究-以桃園觀音區為例,國立中央大學,碩士論文,2017 年。
林啟文與林偉雄,五萬分之一地質圖-三星圖幅,第十五號,中央地質調查所,1995年。
林聖恩、詹雅馨、郭志禹、陳柔妃、許雅儒、張國楨、李心平、吳若穎、林慶偉,集水區水理模式應用於深層潛移山崩發生時序探討,中華水土保持學報,第四十八卷第四期,153-162頁,2017年。
林慶偉、陳柔妃、陳宏宇、許雅儒、郭志禹、陳建志、林美聆、王國隆,大規模崩塌多元多尺度綜合監測、資料綜整分析與滑動機制研究:以太平山蘭台地區為例(III),科技部專題研究計畫,2017年。
夏國強,蘭台地區坡地崩塌演化與破壞機制分析,國立台灣大學,碩士論文,2016年。
許芳鳴,以地電阻影像法探討地滑敏感區電阻率構造與環境因子之關係,國立中央大學,碩士論文,2015 年。
陳文福、李毅宏、吳輝龍,結合地文與降雨條件以判定土石流發生之研究-以陳有蘭溪集水區為例,臺灣地理資訊學刊,第二期,27-44頁,2005年。
陳振宇、劉維則、許家祥,使用QPESUMS雨量資料建立崩塌災害預警模式,中華水土保持學報,第四十八期第一卷,44-55頁,2017年。
曾長生,宜蘭縣清水及土場區地質及地熱產狀,台灣石油地質,第十五號,205-214頁,1978年。
曾耀賢,蘭台地區之演化與破壞機制分析,國立臺灣大學,碩士論文,2019年。
黃至用,宜專一線公路蘭台苗圃地區地滑案之研究,國立宜蘭大學,碩士論文,2011年。
劉艶輝、唐燦、李鐵鋒、溫銘生、連建發,地質災害與降雨雨型的關係研究,工程地質學報,第十七期第五卷,656-661頁,2009年。
蔡政霖,降雨及地文條件與土石流出量關係之研究,國立中興大學,碩士論文,2010年。
指導教授 陳建志 審核日期 2021-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明