博碩士論文 108623018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:55 、訪客IP:18.222.161.241
姓名 王若宇(Ruo-Yu Wang)  查詢紙本館藏   畢業系所 太空科學與工程研究所
論文名稱 以立方衛星與微衛星進行GNSS-R/RO觀測的可行性研究
(Feasibility Study on GNSS-R/RO Observation Using CubeSats or Microsatellite豈)
相關論文
★ 電離層赤道異常區之電子濃度季節性震盪及日變化★ Development and Validation of an Airglow Photometer for Upper Atmospheric Chemistry
★ Tidal Variability Due to the Quasi-Biennial Oscillation and Ionospheric Responses★ 自地面觀測氣輝反演氧原子離子光化學模型
★ 福衛三號S4閃爍指數時空變化與潮汐分析★ 飛鼠號立方衛星電力次系統設計
★ 支援飛鼠號立方衛星之S頻段地面站評估及整測★ 福衛五號軌道推算軟體敏感度及飛行資料分析
★ 適用於小型衛星二階段展開太陽能板的鎖定鉸鏈的結構設計,分析以及測試★ 中央大學地面系統設計、整測與驗證
★ 太空飛行器電力次系統硬體迴路測試平台之建立★ 縮裝型小衛星氧原子酬載:實作、功能與環境驗證
★ 應用先進電離層探測儀與類神經網路以建立初步電漿泡預測模型★ 飛鼠號立方衛星之飛行軟體及韌體設計
★ IDEASSat任務的經驗教訓:大學立方衛星 的設計、測試、在軌運行和異常分析★ Deep Space Radiation Probe 結構與熱控的設計模擬與測試驗證
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) GNSS全球導航衛星系統帶給人類許多便利,除了精準定位以外,GNSS也可應用於大氣、電離層與海洋等地球觀測應用。GNSS-R/RO藉由接收經反射和偏折的導航衛星訊號,分析訊號特性變化反推經過介質的物理特性。使用低軌道衛星進行GNSS-R/RO可大幅增加海表以上資料點,包含大氣邊界層與電離層資訊,提供數值天氣預報資料同化及建立用於太空天氣監測的電離層模型。
因應國內與國際上對於衛星遙測大氣、海表資料的迫切需求,國內由國家太空中心(TASA)主導GNSS-RO衛星遙測國際合作計畫,在福爾摩沙三號、七號衛星獲得豐碩成果與經驗,並積極投入下一代GNSS-R衛星獵風者號進行技術驗證與海表資料提供。考慮現行福衛七號觀測能量及國際上民營科學資料機構Spire的地球觀測星系等計畫,評估國內下一代GNSS-R/RO衛星可能的發展方向。
本文收集當代GNSS-R/RO衛星計畫以及使用者需求,在考慮再訪臺灣地面站的條件下,以GPS星系為主,參考Walker星系展樣,根據需求設計出進行GPS-R/RO的Walker Delta星系,並討論不同案例中覆蓋表現。因應立方衛星應用蓬勃發展,本文採納以立方衛星及微衛星進行GPS-R的兩種情境進行地球觀測模擬。GPS-R/RO模擬過程使用STK輔助,STK提供軌道推算及VGT工具,可大幅降低運算複雜度。根據現有觀測能量及使用者需求,本文將不同案例模擬結果進行可行性分析,並提出可能應用的方向。
摘要(英) The Global Navigation Satellite System (GNSS) brings many conveniences to humanity. In addition to precise positioning and timing, GNSS can also be applied to Earth observation, such as atmospheric studies, space weather and phenomena above the sea surface. GNSS-R/RO (GNSS-Reflectometry/Radio Occultation) are satellite based remote sensing techniques that use GNSS measurement of reflected/direct navigation satellite signals by LEO (Low Earth Orbit) satellite. With analysis of the received signal, the characteristics of the medium along the signal track can be retrieved from signal differences. The applications of LEO satellites in GNSS-R/RO observation can greatly increase the amount of data points above the ocean area, obtaining information on the atmosphere and ionosphere, which provides data to be assimilated for numerical weather prediction, or to establishing ionosphere models for space weather monitoring.
In accordance with high demand on satellite remote sensing of atmosphere and sea surface around the world, the Taiwan Space Agency (TASA) leads the GNSS-RO program in Taiwan, along with international cooperation. With the success and experience in GNSS measurement from FORMOSAT-3/COSMIC and FORMOSAT-7/COSMIC-2, TASA started the next GNSS measurement project, TRITON, for GNSS-R technical verification and providing users with sea surface data. Considering the COSMIC-2 observation capacity and the evolution of the commercial SPIRE satellite constellation for Earth observation, TASA has decided to have discussions about the feasibility of the next generation GNSS-R/RO satellite.
This article collects information from contemporary GNSS-R/RO satellite programs, conferences and data user requirements. Under the condition of revisiting the Taiwan ground station, constellations are built following user requirements and designed as Walker constellations. Using GPS (Global Positioning System) as the navigation satellite constellation utilized for GNSS-R/RO event simulation, the article discusses the coverage Figure of Merit (FOM ) in cases and demonstrates results as well. CubeSats are also popular nowadays for Earth observation. Therefore, this thesis establishes two scenarios for CubeSats and MicroSats respectively in the GPS-R simulation. In the GNSS-R/RO event simulation process, STK (System Tool Kits) provides orbit propagation and the Vector Geometry Tool, which are helpful in reducing complexity in the calculations. With the capacity of GNSS-R/RO measurement and requirements of the end user, this paper will demonstrate simulation results, and provide probable future applications.
關鍵字(中) ★ 星系設計
★ GNSS-R/RO
★ 立方衛星
★ 微衛星
關鍵字(英) ★ Constellation Design
★ GNSS-R/RO
★ CubeSat
★ MicroSat
論文目次 摘要 1
Abstract 2
目錄 4
圖目錄 6
表目錄 8
一、 緒論 9
1-1 前言 9
1-2 全球定位系統 9
1-3 衛星觀測與天氣預報 10
1-3-1 數值天氣預報與資料同化 10
1-3-2 全球導航衛星系統無線電掩星(GNSS-RO) 13
1-3-3 全球導航衛星系統反射觀測(GNSS-R) 15
1-3-4 現有GNSS-R/RO系統 17
1-3-5 衛星資料用者需求 19
1-4 微衛星與立方衛星 21
1-5 坐標系統與坐標轉換 23
1-5-1 軌道六元素(Classical Orbit Elements) 23
1-5-2 座標系統(Coordinate System) 24
1-5-3 坐標轉換法[32][35] 26
1-6 軌道推算器 28
1-6-1 J2 Propagator 28
1-6-2 SGP4 29
二、 全球定位系統無線電掩星觀測(GPS-RO)事件模擬 30
2-1 GPS-RO事件模擬假設 31
2-2 無線電掩星事件模擬設計 32
2-2-1 LEO衛星軌道 34
2-2-2 STK模擬設定 35
2-3 GPS-RO事件模擬分析 38
2-4 GPS-RO 模擬結果 39
三、 全球定位系統無線電反射觀測(GPS-R)事件模擬 41
3-1 GPS-R事件模擬情境 41
3-2 事件過濾 43
3-3 鏡像點(Specular Point) 47
3-4 GPS-R模擬流程 49
四、 星系設計 51
4-1 覆蓋品質因數 53
4-2 Walker星系 55
4-3 時間軸分析 56
4-3-1 重複軌跡軌道(Repeat Ground Track) 56
4-3-2 衛星升降分析(Rise/Set ) 59
4-3-3 時間軸排列 63
4-4 星系設計流程 64
五、 星系設計流程與觀測模擬結果 65
5-1 任務需求與案例設置 65
5-2 GPS-R星系建立 67
5-3 覆蓋模擬建立 70
5-4 模擬結果 76
六、 結果討論與未來展望 88
參考文獻 93
附錄 99
附錄一 、GPS Operational List[1][2][3]。 99
附錄二 、儒略日與格林威治恆星時轉換[62]。 100
附錄三 、MatLab ecef2lla algorithm 101
附錄四 、衛星軌道擾動[35] 102
附錄五 、星系設計規則 103
參考文獻 [1] GPS Constellation | Navigation Center. (2023, February 16). GPS Constellation | Navigation Center. https://www.navcen.uscg.gov/gps-constellation.
[2] CelesTrak: Current GP Element Sets. (n.d.). CelesTrak: Current GP Element Sets. https://celestrak.org/NORAD/elements/.
[3] List of GPS satellites - Wikipedia. (2015, March 21). List of GPS Satellites - Wikipedia. https://en.wikipedia.org/wiki/List_of_GPS_satellites.
[4] 國土資訊系統整體建置計畫 經建會, 政府機關資訊通報第 306 期. 中央氣象局「數值天氣預報作業」簡介, 中華民國 102 年 4 月.
[5] Schumacher et al. WRF High Resolution Dynamical Downscaling of Precipitation for the Central Andes of Chile and Argentina.
[6] Lara-Fanego, V., et al. "Evaluation of DNI forecast based on the WRF mesoscale atmospheric model for CPV applications." AIP conference proceedings. Vol. 1477. No. 1. American Institute of Physics, 2012.
[7] 交通部 全球資訊網. 110年度交通年鑑, 第十一篇 : 氣象, 第三章 測報業務, 第三節 數值預報.
[8] Kuo, Y. -H., Fang, X., & Liu, H. (2012). The impacts of GPS radio occultation data on the analysis and prediction of tropical cyclones [presentation]. In 30th Conference on Hurricanes and Tropical Meteorology. American Meteorological Society: Ponte Vedra Beach, FL, US.
[9] TACC台灣資料分析中心. https://tacc.cwb.gov.tw/v2/.
[10] Lee, Lou-Chuang, Christian Rocken, and Robert Kursinski, eds. Applications of Constellation Observing System for Meteorology, Ionosphere & Climate. Springer Science & Business Media, 2001.
[11] 中央氣象, TACC科學演算說明手冊, https://tacc.cwb.gov.tw/documents/TACC_SCIENCE_DOC.pdf
[12] Schreiner, W. S., Sokolovskiy, S., Rocken, C., Hunt, D. C., & Kuo, Y. -H. (2010). GPS RO processing from raw phase and amplitude to bending angle [presentation]. In Occultations for Probing Atmosphere and Climate (OPAC) 2010. Graz, 6, AT.
[13] 交通部中央氣象局 太空作業辦公室. https://swoo.cwb.gov.tw/V2/index.html.
[14] HAO, NCAR. Thermosphere Ionosphere Electrodynamics General Circulation Model. https://www.hao.ucar.edu/modeling/tgcm/tie.php.
[15] Lin, C. H., et al. "Motions of the equatorial ionization anomaly crests imaged by FORMOSAT‐3/COSMIC." Geophysical Research Letters 34.19 (2007).
[16] Guerova, Guergana, and Tzvetan Simeonov. Global Navigation Satellite System Monitoring of the Atmosphere. Elsevier, 2021.
[17] Yu, Kegen. Theory and practice of GNSS reflectometry. Springer, 2021.
[18] Gleason, Scott, and Christopher Ruf. "Overview of the delay Doppler mapping instrument (DDMI) for the cyclone global navigation satellite systems mission (CYGNSS)." 2015 IEEE MTT-S International Microwave Symposium. IEEE, 2015.
[19] Ho, Shu-peng, et al. "Using Radio Occultation Data for Atmospheric Numerical Weather Prediction, Climate Sciences, and Ionospheric Studies and Initial Results from COSMIC-2, Commercial RO Data, and Recent RO Missions." Bulletin of the American Meteorological Society 103.11 (2022): E2506-E2512.
[20] World Meteorological Organization, Observing Systems Capability Analysis and Review Tool. https://space.oscar.wmo.int/.
[21] Weiss, Jan-Peter, et al. "COSMIC-2 Mission Summary at Three Years in Orbit." Atmosphere 13.9 (2022): 1409.
[22] Ruf, C., S. Asharaf, R. Balasubramaniam, S. Gleason, T. Lang, D. McKague, D. Twigg, and D. Waliser. 2019. In-Orbit Performance of the Constellation of CYGNSS Hurricane Satellites., Bulletin of the American Meteorological Society, 100, 10.
[23] Spire Global, Inc. Frequently Asked Questions, NASA CSDA Program, 1 MAR 2022.
[24] Hunter Garbacz, Vu Nguyen, Phil Jales, Spire Global, Inc., Spire Earth Observations. NASA CSDA Program Lunch & Learn, 06 OCT 2022.
[25] Matthew Angling (Spire) via Loren C. Chang, private communication. matthew.angling@spire.com
[26] Silvestrin, P., et al. "Spaceborne GNSS radio occultation instrumentation for operational applications." Proceedings of the 13th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2000). 2000.
[27] Science Assessment Team, NOAA. CGMS, Report of the 50th meeting of the CGMS. CGMS-50-IROWG-WP-02: Future GNSS radio occultation data needs, 27 June 2022.
[28] Shu-Chih Yang, Department of Atmospheric Sciences, College of Earth Sciences, National Central University. E-mail: shuchih.yang@gmail.com.
[29] Jann-Yenq Liu, Department of Space Science and Engineering, College of Earth Sciences, National Central University. Email: jyliu@jupiter.ss.ncu.edu.tw.
[30] NASA. What are SmallSats and CubeSats?. https://www.nasa.gov/content/what-are-smallsats-and-cubesats.
[31] Cal Poly – San Luis Obispo, CA. CubeSat Design Specification, (1U – 12U), REV 14.1, CP-CDS-R14.1.
[32] Vallado, David A. Fundamentals of astrodynamics and applications. Vol. 12. Springer Science & Business Media, 2001.
[33] NIMA, “Department of Defense World Geodetic System 1984”, NIMA-TR 8350.2, 3rd ed, Amendment 1, Washington, DC, National Imagery and Mapping Agency, 2000.
[34] STK Help. https://www.ansys.com/products/missions/ansys-stk
[35] Montenbruck, Oliver, Eberhard Gill, and Fh Lutze. "Satellite orbits: models, methods, and applications." Appl. Mech. Rev. 55.2 (2002): B27-B28.
[36] Alexander, P., et al. "Assessment of precision in ionospheric electron density profiles retrieved by GPS radio occultations." Advances in Space Research 54.11 (2014): 2249-2258.
[37] W. S. Schreiner, S. V. Sokolovskiy, C. Rocken and D. C. Hunt, "Analysis and validation of GPS/MET radio occultation data in the ionosphere," in Radio Science, vol. 34, no. 4, pp. 949-966, July-Aug. 1999, doi: 10.1029/1999RS900034.
[38] Hu, Andong, et al. "Modeling of topside ionospheric vertical scale height based on ionospheric radio occultation measurements." Journal of Geophysical Research: Space Physics 124.6 (2019): 4926-4942.
[39] Kelley, Michael C. The Earth′s ionosphere: Plasma physics and electrodynamics. Academic press, 2009.
[40] SmallSat Rideshare Program – SpaceX, https://www.spacex.com/rideshare/
[41] Jin, Shuanggen, Estel Cardellach, and Feiqin Xie. GNSS remote sensing. Vol. 16. Dordrecht: Springer, 2014.
[42] GAO, Fan, et al. Spatiotemporal evaluation of GNSS-R based on future fully operational global multi-GNSS and eight-LEO constellations. Remote Sensing, 2018, 10.1: 67.
[43] Wu, Sien-Chong, Thomas Meehan, and Larry Young. "The potential use of GPS signals as ocean altimetry observables." (1997).
[44] Liu, Zongqiang, et al. "Increasing the number of sea surface reflected signals received by GNSS-Reflectometry altimetry satellite using the nadir antenna observation capability optimization method." Remote Sensing 11.21 (2019): 2473.
[45] Tom Yunck (GeoOptics) via Loren C. Chang, private communication. tyunck@geooptics.com
[46] Wu, Fan, et al. "Improving the GNSS-R specular reflection point positioning accuracy using the gravity field normal projection reflection reference surface combination correction method." Remote Sensing 11.1 (2018): 33.
[47] NOAA, National Geodetic Survey, https://geodesy.noaa.gov/GEOID/GSVS/
[48] Larson, Wiley J., and James Richard Wertz, eds. Space mission analysis and design. Vol. 3. Torrance, CA: Microcosm, 1992.
[49] Bussy-Virat, Charles D., Christopher S. Ruf, and Aaron J. Ridley. "Relationship between temporal and spatial resolution for a constellation of GNSS-R satellites." IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 12.1 (2018): 16-25.
[50] Nadoushan, Mahdi Jafari, and Nima Assadian. "Repeat ground track orbit design with desired revisit time and optimal tilt." Aerospace Science and technology 40 (2015): 200-208.
[51] Ma, Der-Ming, and Wen-Chiang Hsu. "Exact design of partial coverage satellite constellations over oblate earth." Journal of Spacecraft and Rockets 34.1 (1997): 29-35.
[52] Luo, Xin, et al. "Constellation design for earth observation based on the characteristics of the satellite ground track." Advances in Space Research 59.7 (2017): 1740-1750.
[53] MATLAB, Help Center. https://www.mathworks.com/help/index.html
[54] Brent, R., Algorithms for Minimization Without Derivatives, Prentice-Hall, 1973.
[55] Hanson, John, Maria Evans, and Ronald Turner. "Designing good partial coverage satellite constellations." Astrodynamics conference. 1990.
[56] WRFDA USER PAGE/WRFDA User’s Guide/WRFDA V4.4. "Chapter 6: WRF Data Assimilation (WRFDA)."
[57] Thodsan, Thippawan, et al. "Satellite Radiance Data Assimilation Using the WRF-3DVAR System for Tropical Storm Dianmu (2021) Forecasts." Atmosphere 13.6 (2022): 956.
[58] Bullock, R. "Great circle distances and bearings between two locations." MDT, June 5 (2007).
[59] European Union Space Programme. European GNSS Service Centre. https://www.gsc-europa.eu/
[60] 福衛五號軌道推算軟體敏感度及飛行資料分析. 2020. PhD Thesis. National Central University.
[61] Kepler company. https://kepler.space/
[62] Computing Approximate Sidereal Time. (n.d.). Computing Approximate Sidereal Time. https://aa.usno.navy.mil/faq/GAST?fbclid=IwAR16FrChnFqDpEy4xY1-9knJJf9civrbw9HcK4Rb7qkZF5SwWLWTo6IjaFA
指導教授 張起維(Loren Chang) 審核日期 2023-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明