參考文獻 |
[1] 中華民國內政部營建署。建築基地綠化設計技術規範,2019
[2] 中華民國經濟部水利署。水利法第七章之一逕流分擔與出流管制,2018
[3] 中華民國經濟部水利署。逕流分擔技術手冊,2020
[4] 邱靜怡,2012,「綠屋頂能量與水文模式發展及本土化參數之研究」,國立台灣 大學生物環境系統工程學研究所碩士論文
[5] 羅唯瑄, 2013,「發展綠屋頂水文模式與應用於減洪效用分析」,國立台灣大學生物環境系統工程學研究所碩士論文
[6] Al-Zu’bi, M., & Mansour, O. (2017). Water, energy, and rooftops: integrating green roof systems into building policies in the Arab region. Environment and Natural Resources Research, 7(2), 11-36.
[7] Burszta‐Adamiak, E., Stańczyk, J., & Łomotowski, J. (2019). Hydrological performance of green roofs in the context of the meteorological factors during the 5‐year monitoring period. Water and environment journal, 33(1), 144-154.
[8] Carter, T. L., & Rasmussen, T. C. (2006). Hydrologic behavior of vegetated roofs 1. JAWRA Journal of the American Water Resources Association, 42(5), 1261-1274.
[9] Chen, P.Y., Tung, C.P., Lo, W.H., Li, Y.H. (2014). Towards the practicability of a heat transfer model for green roofs. Ecological Engineering (submitted).
[10] Cipolla, S. S., Maglionico, M., & Stojkov, I. (2016). A long-term hydrological modelling of an extensive green roof by means of SWMM. Ecological Engineering, 95, 876-887.
[11] County, P. G. S., & June, M. D. (1999). Low-impact development design strategies: An integrated design approach. Department of Environmental Resources, Programs and Planning Division, Prince George’s County, Maryland.
[12] Cristiano, E., Deidda, R., & Viola, F. (2020). The role of green roofs in urban Water-Energy-Food-Ecosystem nexus: A review. Science of the Total Environment, 143876.
[13] Fassman-Beck, E., Voyde, E., Simcock, R., & Hong, Y. S. (2013). 4 Living roofs in 3 locations: Does configuration affect runoff mitigation?. Journal of Hydrology, 490, 11-20.
[14] Garofalo, G., Palermo, S., Principato, F., Theodosiou, T., & Piro, P. (2016). The influence of hydrologic parameters on the hydraulic efficiency of an extensive green roof in mediterranean area. Water, 8(2), 44.
[15] Guzmán-Sánchez, S., Jato-Espino, D., Lombillo, I., & Diaz-Sarachaga, J. M. (2018). Assessment of the contributions of different flat roof types to achieving sustainable development. Building and Environment, 141, 182-192.
[16] Guzmán-Sánchez, S., Jato-Espino, D., Lombillo, I., & Diaz-Sarachaga, J. M. (2018). Assessment of the contributions of different flat roof types to achieving sustainable development. Building and Environment, 141, 182-192.
[17] Hakimdavar, R., Culligan, P. J., Finazzi, M., Barontini, S., & Ranzi, R. (2014). Scale dynamics of extensive green roofs: Quantifying the effect of drainage area and rainfall characteristics on observed and modeled green roof hydrologic performance. Ecological Engineering, 73, 494-508.
[18] Harper, G. E., Limmer, M. A., Showalter, W. E., & Burken, J. G. (2015). Nine-month evaluation of runoff quality and quantity from an experiential green roof in Missouri, USA. Ecological Engineering, 78, 127-133.
[19] Hellies, M., Deidda, R., & Viola, F. (2018). Retention performances of green roofs worldwide at different time scales. Land Degradation & Development, 29(6), 1940-1952.
[20] Hilten, R. N., Lawrence, T. M., & Tollner, E. W. (2008). Modeling stormwater runoff from green roofs with HYDRUS-1D. Journal of hydrology, 358(3-4), 288-293.
[21] Jim, C. Y., & Peng, L. L. (2012). Substrate moisture effect on water balance and thermal regime of a tropical extensive green roof. Ecological Engineering, 47, 9-23.
[22] Li, Y., & Babcock Jr, R. W. (2014). Green roof hydrologic performance and modeling: a review. Water science and technology, 69(4), 727-738.
[23] Liu, L., Sun, L., Niu, J., & Riley, W. J. (2020). Modeling green roof potential to mitigate urban flooding in a Chinese City. Water, 12(8), 2082.
[24] Magill, J. D., Midden, K., Groninger, J., & Therrell, M. (2011). A history and definition of green roof technology with recommendations for future research. Southern Illinois University Carbondale,[online] http://opensiuc. lib. siu. edu/cgi/viewcontent. cgi.
[25] Martens, R. (2020). Implementing Integrated Sustainable Roof Design (ISRD) in the Netherlands, Robin Martens. Copyright© Authors, 2020 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission in writing, from the authors. The opinions expressed here are the author’s own; they do not necessarily reflect the views of any institutions. Part of Assignments-As-Products (APP) and Digitally Enhanced Eligible Products, 115.
[26] Nardini, A., Andri, S., & Crasso, M. (2012). Influence of substrate depth and vegetation type on temperature and water runoff mitigation by extensive green roofs: shrubs versus herbaceous plants. Urban Ecosystems, 15(3), 697-708.
[27] Palla, A., & Gnecco, I. (2015). Hydrologic modeling of Low Impact Development systems at the urban catchment scale. Journal of hydrology, 528, 361-368.
[28] Palla, A., Gnecco, I., & Lanza, L. G. (2009). Unsaturated 2D modelling of subsurface water flow in the coarse-grained porous matrix of a green roof. Journal of Hydrology, 379(1-2), 193-204.
[29] Poë, S., Stovin, V., & Berretta, C. (2015). Parameters influencing the regeneration of a green roof’s retention capacity via evapotranspiration. Journal of Hydrology, 523, 356-367.
[30] Rawls, W.J., Brakensiek, D.L., Miller, N. (1983). Green-Ampt infiltration parameters from soils data. J. Hydraul. Div., Am. Soc. Civ. Eng., 109(1), 62-70
[31] Shafique, M., Kim, R., & Rafiq, M. (2018). Green roof benefits, opportunities and challenges–A review. Renewable and Sustainable Energy Reviews, 90, 757-773.
[32] She, N., & Pang, J. (2010). Physically based green roof model. Journal of hydrologic engineering, 15(6), 458-464.
[33] Simmons, M. T., Gardiner, B., Windhager, S., & Tinsley, J. (2008). Green roofs are not created equal: the hydrologic and thermal performance of six different extensive green roofs and reflective and non-reflective roofs in a sub-tropical climate. Urban Ecosystems, 11(4), 339-348.
[34] Stojkov, I., Cipolla, S. S., Maglionico, M., Bonoli, A., Conte, A., Ferroni, L., & Speranza, M. (2017, September). Hydrological performance of Sedum species compared to perennial herbaceous species on a full-scale green roof in Italy. In International Symposium on Greener Cities for More Efficient Ecosystem Services in a Climate Changing World 1215 (pp. 117-120).
[35] Stovin, V., Vesuviano, G., & Kasmin, H. (2012). The hydrological performance of a green roof test bed under UK climatic conditions. Journal of hydrology, 414, 148-161.
[36] Viola, F., Hellies, M., & Deidda, R. (2017). Retention performance of green roofs in representative climates worldwide. Journal of Hydrology, 553, 763-772.
[37] Voyde, E., Fassman, E., Simcock, R., Wells, J. (2010). Quantifying evapotranspiration rates for New Zealand green roofs. Journal of Hydrologic Engineering, 15(6), 395-403.
[38] Zhang, Q., Miao, L., Wang, X., Liu, D., Zhu, L., Zhou, B., ... & Liu, J. (2015). The capacity of greening roof to reduce stormwater runoff and pollution. Landscape and Urban Planning, 144, 142-150.
[39] Zhang, Z., Szota, C., Fletcher, T. D., Williams, N. S., & Farrell, C. (2019). Green roof storage capacity can be more important than evapotranspiration for retention performance. Journal of environmental management, 232, 404-412.
|