參考文獻 |
Al-Zanaidi, M.A., Hui, W.H., 1984. Turbulent airflow over water waves-a numerical study. J. Fluid Mech. 148, 225–246. https://doi.org/10.1017/S0022112084002329
Banner, M.L., 1990. The influence of wave breaking on the surface pressure distribution in wind-wave interactions. J. Fluid Mech. 211, 463–495. https://doi.org/10.1017/S0022112090001653
Banner, M.L., Melville, W.K., 1976. On the separation of airflow over water waves. J. Fluid Mech. 77, 825–842. https://doi.org/10.1017/S0022112076002905
Banner, M.L., Peirson, W.L., 2007. Wave breaking onset and strength for two-dimensional deep-water wave groups. J. Fluid Mech. 585, 93–115. https://doi.org/10.1017/S0022112007006568
Banner, M.L., Peirson, W.L., 1998. Tangential stress beneath wind-driven air-water interfaces. J. Fluid Mech. 364, 115–145. https://doi.org/10.1017/S0022112098001128
Banner, M.L., Peregrine, D.H., 1993. Wave breaking in deep water. Annu. Rev. Fluid Mech. 25, 373–397. https://doi.org/10.1146/annurev.fluid.25.1.373
Banner, M.L., Phillips, M., 1974. On the incipient breaking of small scale waves, Journal of Fluid Mechanics.
Barranco, I., Liu, P.L.F., 2021. Run-up and inundation generated by non-decaying dam-break bores on a planar beach. J. Fluid Mech. 915, 1–29. https://doi.org/10.1017/jfm.2021.98
Battjes, J.A., 1988. Surf-zone dynamics. Annu. Rev. Fluid Mech. 20, 257–93. https://doi.org/10.1007/978-3-642-84847-6_4
Battjes, J.A., 1974. Surf similarity, in: Coastal Engineering Proceedings. pp. 466–479. https://doi.org/10.9753/icce.v14.26
Belcher, S.E., Hunt, J.C.R., 1993. Turbulent shear flow over slowly moving waves. J. Fluid Mech. 251, 109–148. https://doi.org/10.1017/S0022112093003350
Blenkinsopp, C.E., Chaplin, J.R., 2007. Void fraction measurements in breaking waves. Proc. R. Soc. A Math. Phys. Eng. Sci. 463, 3151–3170. https://doi.org/10.1098/rspa.2007.1901
Boussinesq, J., 1872. Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Mathématiques Pures Appliquées 2e série 17, 55–108.
Burgers, G., Makin, V.K., 1993. Boundary-layer model results for wind-sea growth. J. Phys. Oceanogr. 23, 372–385.
Carter, D.J.T., 1982. Prediction of wave height and period for a constant wind velocity using the JONSWAP results. Ocean Eng. 9, 17–33. https://doi.org/10.1016/0029-8018(82)90042-7
Chang, K.A., Liu, P.L.F., 1998. Velocity, acceleration and vorticity under a breaking wave. Phys. Fluids 10, 327–329. https://doi.org/10.1063/1.869544
Chen, G., Belcher, S.E., 2000. Effects of long waves on wind-generated waves. J. Phys. Oceanogr. 30, 2246–2256. https://doi.org/10.1175/1520-0485(2000)030<2246:EOLWOW>2.0.CO;2
Cho, Y.S., Liu, P.L.F., 1999. Crest-length effects in nearshore tsunami run-up around islands. J. Geophys. Res. Ocean. 104, 7907–7913. https://doi.org/10.1029/1999jc900012
Chorin, A.J., 1969. On the convergence of discrete approximations to the Navier-Stokes Equations. Math. Comput. 23, 341. https://doi.org/10.2307/2004428
Chorin, A.J., 1968. Numerical solution of the Navier-Stokes. Math. Comput. 22, 745–762. https://doi.org/10.2307/2004575
Chu, C.-R., Chung, C.-H., Wu, T.-R., Wang, C.-Y., 2016. Numerical Analysis of Free Surface Flow over a Submerged Rectangular Bridge Deck. J. Hydraul. Eng. 142, 1–11. https://doi.org/10.1061/(asce)hy.1943-7900.0001177
Chu, C.R., Lin, Y.A., Wu, T.R., Wang, C.Y., 2018a. Hydrodynamic force of a circular cylinder close to the water surface. Comput. Fluids 171, 154–165. https://doi.org/10.1016/j.compfluid.2018.05.032
Chu, C.R., Tran, T.T.T., Wu, T.R., 2021. Numerical analysis of free-surface flows over rubber dams. Water (Switzerland) 13. https://doi.org/10.3390/w13091271
Chu, C.R., Wu, Y.R., Wu, T.R., Wang, C.Y., 2018b. Slosh-induced hydrodynamic force in a water tank with multiple baffles. Ocean Eng. 167, 282–292. https://doi.org/10.1016/j.oceaneng.2018.08.049
Ciurana, A.B., Aguilar, E., 2020. Expected distribution of surfing days in the Iberian peninsula. J. Mar. Sci. Eng. 8. https://doi.org/10.3390/JMSE8080599
Cox, D.T., Shin, S., 2003. Laboratory measurements of void fraction and turbulence in the bore region of surf zone waves. ASCE 129, 1197–1205. https://doi.org/10.1061/ASCE0733-93992003129:101197
Davis, R.E., 1972. On the turbulent flow over a wavy boundary. J. Fluid Mech. 52, 287–306. https://doi.org/10.1017/S002211207000157X
Dean, R.G., Dalrymple, R.A., 1991. Water wave mechanics for engineers and scientists, World Scientific Publishing Co. Pte. Ltd.
Deane, G.B., Stokes, M.D., 2002. Scale dependence of bubble creation mechanisms in breaking waves. Nature 418, 839–844. https://doi.org/10.1038/nature00967
Deng, B., Wang, M., Yao, W., Tang, H., Jiang, C., 2021. Laboratory and numerical investigations on characteristics of air bubbles in plunging breakers on beach. Ocean Eng. 224. https://doi.org/10.1016/j.oceaneng.2021.108728
Dommermuth, D.G., Yue, D.K.P., Lin, W.M., Rapp, R.J., Chan, E.S., Melville, W.K., 1988. Deep-water plunging breakers: A comparison between potential theory and experiments. J. Fluid Mech. 189, 423–442. https://doi.org/10.1017/S0022112088001089
Douglass, S.L., 1990. Influence of wind on breaking waves. J. Waterw. Port, Coastal, Ocean Eng. 116, 651–663. https://doi.org/10.1061/(asce)0733-950x(1990)116:6(651)
Drazen, D.A., Melville, W.K., 2009. Turbulence and mixing in unsteady breaking surface waves. J. Fluid Mech. 628, 85–119. https://doi.org/10.1017/S0022112009006120
Feddersen, F., Veron, F., 2005. Wind effects on shoaling wave shape. J. Phys. Oceanogr. 35, 1223–1228. https://doi.org/10.1175/JPO2753.1
Fulgosi, M., Lakehal, D., Banerjee, S., De Angelis, V., 2003. Direct numerical simulation of turbulence in a sheared air-water flow with a deformable interface. J. Fluid Mech. 482, 319–345. https://doi.org/10.1017/S0022112003004154
Galloway, J.S., Collins, M.B., Moran, A.D., 1989. Onshore/offshore wind influence on breaking waves: An empirical study. Coast. Eng. 13, 305–323. https://doi.org/10.1016/0378-3839(89)90039-2
Galvin, C.J., 1972. Wave breaking in shallow water, Waves on Beaches and Resulting Sediment Transport. https://doi.org/10.1016/b978-0-12-493250-0.50015-1
Gent, P.R., Taylor, P.A., 1977. A note on “separation” over short wind waves. Boundary-Layer Meteorol. 11, 65–87. https://doi.org/10.1007/BF00221825
Gent, P.R., Taylor, P.A., 1976. A numerical model of the air flow above water waves. J. Fluid Mech. 77, 105–128. https://doi.org/10.1017/S0022112077000706
Grilli, S.T., Svendsen, I.A., Subramanya, R., 1997. Breaking criterion and characteristics for solitary waves on slopes. J. Waterw. Port, Coastal, Ocean Eng. 123, 102–112. https://doi.org/10.1061/(asce)0733-950x(1997)123:3(102)
Harlow, F.H., Welch, J.E., 1965. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 2182–2189. https://doi.org/10.1063/1.1761178
Henriquez, M., 2004. Artificial Surf Reefs. Delft University of Technology.
Hieu, P.D., Katsutoshi, T., Ca, V.T., 2004. Numerical simulation of breaking waves using a two-phase flow model. Appl. Math. Model. 28, 983–1005. https://doi.org/10.1016/j.apm.2004.03.003
Hieu, P.D., Vinh, P.N., Van Toan, D., Son, N.T., 2014. Study of wave-wind interaction at a seawall using a numerical wave channel. Appl. Math. Model. 38, 5149–5159. https://doi.org/10.1016/j.apm.2014.04.038
Hirt, C.W., Nichols, B.D., 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225. https://doi.org/10.1007/s40998-018-0069-1
Hoque, A., Aoki, S.I., 2005. Distributions of void fraction under breaking waves in the surf zone. Ocean Eng. 32, 1829–1840. https://doi.org/10.1016/j.oceaneng.2004.11.013
Hu, K.C., Hsiao, S.C., Hwung, H.H., Wu, T.R., 2012. Three-dimensional numerical modeling of the interaction of dam-break waves and porous media. Adv. Water Resour. 47, 14–30. https://doi.org/10.1016/j.advwatres.2012.06.007
Hubbard, M.E., Dodd, N., 2002. A 2D numerical model of wave run-up and overtopping. Coast. Eng. 47, 1–26. https://doi.org/10.1016/S0378-3839(02)00094-7
Hwang, P.A., 2006. Duration- and fetch-limited growth functions of wind-generated waves parameterized with three different scaling wind velocities. J. Geophys. Res. Ocean. 111. https://doi.org/10.1029/2005JC003180
Iafrati, A., 2009. Numerical study of the effects of the breaking intensity on wave breaking flows. J. Fluid Mech. 622, 371–411. https://doi.org/10.1017/S0022112008005302
Iribarren, C.R., Nogales, C.M., 1949. Protection des ports, in: 17th Int. Navigation Congress. pp. 180–193.
Israeli, M., Orszag, S.A., 1981. Approximation of radiation boundary conditions. J. Comput. Phys. 41, 115–135. https://doi.org/10.1016/0021-9991(81)90082-6
Iwata, K., Kawasaki, K., Kim, D.S., 1996. Breaking limit, breaking, and post-breaking wave deformation due to submerged structures. Proc. 25th Int. Conf. Coast. Eng. https://doi.org/10.1061/9780784402429.181
Jeffreys, H., 1925. On the formation of water waves by wind. Proc. R. Soc. London. Ser. A, Contain. Pap. a Math. Phys. Character 107, 189–206. https://doi.org/10.1098/rspa.1925.0015
Jiang, C., Yang, Y., Deng, B., 2020. Study on the nearshore evolution of regular waves under steady wind. Water 12, 686. https://doi.org/10.3390/w12030686
Karambas, T. V., Koutitas, C., 1992. A breaking wave propagation model based on the Boussinesq equations. Coast. Eng. 18, 1–19. https://doi.org/10.1016/0378-3839(92)90002-C
Kawai, S., 1982. Structure of air flow separation over wind wave crests. Boundary-Layer Meteorol. 23, 503–521. https://doi.org/10.1007/BF00116275
Kawai, S., 1981. Visualization of airflow separation over wind-wave crests under moderate wind. Boundary-Layer Meteorol 21, 93–104.
Kharif, C., Giovanangeli, J.P., Touboul, J., Grare, L., Pelinovsky, E., 2008. Influence of wind on extreme wave events: Experimental and numerical approaches. J. Fluid Mech. 594, 209–247. https://doi.org/10.1017/S0022112007009019
Kim, J., Moin, P., Moser, R., 1987. Turbulence statistics in fully developed channel flow at low reynolds number. J. Fluid Mech. 177, 133–166. https://doi.org/10.1017/S0022112087000892
Kubo, H., Sunamura, T., 2001. Large-scale turbulence to facilitate sediment motion under spilling breakers, in: Coastal Dynamics. pp. 212–221.
Lakehal, D., Meier, M., Fulgosi, M., 2002. Interface tracking towards the direct simulation of heat and mass transfer in multiphase flows. Int. J. Heat Fluid Flow 23, 242–257. https://doi.org/10.1016/S0142-727X(02)00172-8
Lamarre, Melville, W.K., 1991. Air entrainment and dissipation in breaking waves. Nature 351, 469–471.
Lamb, K.G., 2014. Internal wave breaking and dissipation mechanisms on the continental slope/shelf. Annu. Rev. Fluid Mech. 46, 231–254. https://doi.org/10.1146/annurev-fluid-011212-140701
Larsen, J., Dancy, H., 1983. Open boundaries in short wave simulations - A new approach. Coast. Eng. 7, 285–297. https://doi.org/10.1016/0378-3839(83)90022-4
Leonard, A., 1975. Energy cascade in large-eddy simulations of turbulent fluid flows. Adv. Geophys. 18, 237–248. https://doi.org/10.1016/S0065-2687(08)60464-1
Lim, H.J., Chang, K.A., Huang, Z.C., Na, B., 2015. Experimental study on plunging breaking waves in deep water. J. Geophys. Res. C Ocean. 120, 2007–2049. https://doi.org/10.1002/2014JC010269
Lin, C., Hwung, H., 1992. External and internal flow fields of plunging breakers. Exp. Fluids 12, 229–237. https://doi.org/10.1007/bf00187300
Lin, P., Li, C.W., 2003. Wave-current interaction with a vertical square cylinder. Ocean Eng. 30, 855–876. https://doi.org/10.1016/S0029-8018(02)00068-9
Lin, P., Liu, P.L.F., 1999. Internal wave-maker for Navier-Stokes equations models. J. Waterw. Port, Coastal, Ocean Eng. 124, 207–215.
Lin, P., Liu, P.L.F., 1998. Turbulence transport, vorticity dynamics, and solute mixing under plunging breaking waves in surf zone. J. Geophys. Res. Solid Earth 103, 15677–15694. https://doi.org/10.1029/98jc01360
Liu, D., Lin, P., 2008. A numerical study of three-dimensional liquid sloshing in tanks. J. Comput. Phys. 227, 3921–3939. https://doi.org/10.1016/j.jcp.2007.12.006
Liu, P.L.F., 1995. Model equations for wave propagations from deep to shallow water 125–157. https://doi.org/10.1142/9789812797582_0003
Liu, Philip L. F., Cho, Y.S., Briggs, M.J., Synolakis, C.E., Kanoglu, U., 1995. Run-up of solitary waves on a circular island. J. Fluid Mech. 302, 259–285.
Liu, P. L. F., Cho, Y.S., Yoon, S.B., Seo, S.N., 1995. Numerical Simulations of the 1960 Chilean Tsunami Propagation and Inundation at Hilo, Hawaii 99–115. https://doi.org/10.1007/978-94-015-8565-1_7
Liu, P.L.F., Wu, T.R., Raichlen, F., Synolakis, C.E., Borrero, J.C., 2005. Runup and rundown generated by three-dimensional sliding masses. J. Fluid Mech. 536, 107–144. https://doi.org/10.1017/S0022112005004799
Liu, Z.B., Fang, K.Z., Cheng, Y.Z., 2018. A new multi-layer irrotational Boussinesq-type model for highly nonlinear and dispersive surface waves over a mildly sloping seabed. J. Fluid Mech. 842, 323–353. https://doi.org/10.1017/jfm.2018.99
Lo, H.Y., Park, Y.S., Liu, P.L.F., 2013. On the run-up and back-wash processes of single and double solitary waves - An experimental study. Coast. Eng. 80, 1–14. https://doi.org/10.1016/j.coastaleng.2013.05.001
Longo, S., Petti, M., Losada, I.J., 2002. Turbulence in the swash and surf zones: A review. Coast. Eng. 45, 129–147. https://doi.org/10.1016/S0378-3839(02)00031-5
Longuet-Higgins, M.S., Cartwright, D. E., Smith, N.D., 1963. Observations of the directional spectrum of sea waves using the motions of a floating buoy. Ocean Wave Spectra, Prentice Hall 111–132. https://doi.org/10.1016/s0011-7471(76)80012-5
Longuet-Higgins, M.S., 1969. On Wave Breaking and the Equilibrium Spectrum of Wind-Generated Waves, in: Proceedings of the Royal Society of London. pp. 151–159. https://doi.org/10.1098/rspa.1969.0069
Longuet-Higgins, M.S., Cokelet, E.D., 1976. The deformation of steep surface waves on water - I. A numerical method of computation. Proc. R. Soc. London. A. Math. Phys. Sci. 350, 1–26. https://doi.org/10.1098/rspa.1976.0092
Lubin, P., Vincent, S., Abadie, S., Caltagirone, J.P., 2006. Three-dimensional Large Eddy Simulation of air entrainment under plunging breaking waves. Coast. Eng. 53, 631–655. https://doi.org/10.1016/j.coastaleng.2006.01.001
Lynett, P., Liu, P.L.F., 2004a. Linear analysis of the multi-layer model. Coast. Eng. 51, 439–454. https://doi.org/10.1016/j.coastaleng.2004.05.004
Lynett, P., Liu, P.L.F., 2004b. A two-layer approach to wave modelling. Proc. R. Soc. A Math. Phys. Eng. Sci. 460, 2637–2669. https://doi.org/10.1098/rspa.2004.1305
Maiti, S., Sen, D., 1999. Computation of solitary waves during propagation and runup on a slope. Ocean Eng. 26, 1063–1083. https://doi.org/10.1016/S0029-8018(98)00060-2
Melville, W.K., Matusov, P., 2002. Distribution of breaking waves at the ocean surface. Nature 417, 58–63.
Melville, W.K., 1996. The role of surface-wave breaking in air-sea interaction. Annu. Rev. Fluid Mech. 28, 279–321. https://doi.org/10.1146/annurev.fl.28.010196.001431
Melville, W.K., 1982. The instability and breaking of deep-water waves. J. Fluid Mech. 115, 165–185. https://doi.org/10.1017/S0022112082000706
Melville, W.K., Veron, F., White, C.J., 2002. The velocity field under breaking waves: Coherent structures and turbulence. J. Fluid Mech. 454, 203–233. https://doi.org/10.1017/S0022112001007078
Miles, J.W., 1960. On the generation of surface waves by turbulent shear flows. J. Fluid Mech. 7, 469–478.
Miles, J.W., 1957. On the generation of surface waves by shear flow. J. Fluid Mech. 3, 185–204. https://doi.org/10.1017/S0022112062000828
Mitsuyasu, H., 1985. A note on the momentum transfer from wind to waves. J. Geophys. Res. 90, 3343–3345. https://doi.org/10.1029/jc090ic02p03343
Mitsuyasu, H., 1966. Interactions between water waves and wind (I), Research Institute for Applied Mechanics (RIAM).
Mitsuyasu, H., Yoshida, Y., 2005. Air-sea interactions under the existence of opposing swell. J. Oceanogr. 61, 141–154. https://doi.org/10.1007/s10872-005-0027-1
Miyata, H., Kanai, A., Kawamura, T., Park, J.C., 1996. Numerical simulation of three-dimensional breaking waves. J. Mar. Sci. Technol. 1, 183–197. https://doi.org/10.1007/BF02390795
Mo, W., Jensen, A., Liu, P.L.F., 2013. Plunging solitary wave and its interaction with a slender cylinder on a sloping beach. Ocean Eng. 74, 48–60. https://doi.org/10.1016/j.oceaneng.2013.09.011
Mori, N., Kakuno, S., 2008. Aeration and bubble measurements of coastal breaking waves. Fluid Dyn. Res. 40, 616–626. https://doi.org/10.1016/j.fluiddyn.2007.12.013
Nadaoka, K., Hino, M., Koyano, Y., 1989. Structure of the turbulent flow field under breaking waves in the surf zone. J. Fluid Mech. 204, 359–387. https://doi.org/10.1017/S0022112089001783
Orszag, S.A., Patterson, G.S., 1972. Numerical simulation of three-dimensional homogeneous isotropic turbulence. Phys. Rev. Lett. 28, 76–79. https://doi.org/10.1103/PhysRevLett.28.76
Otsuka, J., Saruwatari, A., Watanabe, Y., 2017. Vortex-induced suspension of sediment in the surf zone. Adv. Water Resour. 110, 59–76. https://doi.org/10.1016/j.advwatres.2017.08.021
Perlin, M., Choi, W., Tian, Z., 2013. Breaking waves in deep and intermediate waters. Annu. Rev. Fluid Mech. 45, 115–145. https://doi.org/10.1146/annurev-fluid-011212-140721
Perlin, M., He, J., Bernal, L.P., 1996. An experimental study of deep water plunging breakers. Phys. Fluids 8, 2365–2374. https://doi.org/10.1063/1.869021
Phillips, O.M., 1957. On the generation of waves by turbulent wind. J. Fluid Mech. 2, 417–445. https://doi.org/10.1098/rsta.1980.0265
Phillips, O.M., Banner, M.L., 1974. Wave breaking in the presence of wind drift and swell. J. Fluid Mech. 66, 625–640. https://doi.org/10.1017/S0022112074000413
Rapp, R.J., Melville, W.K., 1990. Laboratory measurements of deep-water breaking waves. Philos. Trans. R. Soc. London. Ser. A, Math. Phys. Sci. 331, 735–800. https://doi.org/10.1098/rsta.1990.0098
Reul, N., Branger, H., Giovanangeli, J.P., 2008. Air flow structure over short-gravity breaking water waves. Boundary-Layer Meteorol. 126, 477–505. https://doi.org/10.1007/s10546-007-9240-3
Rider, W.J., Kothe, D.B., 1998. Reconstructing Volume Tracking. J. Comput. Phys. 141, 41.
Robertson, B., Hall, K., Zytner, R., Nistor, I., 2013. Breaking waves: review of characteristic relationship. Coast. Eng. J. 55, 40. https://doi.org/10.1142/S0578563413500022
Ronmarin, P., 1989. Geometric properties of deep-water breaking waves. J. Fluid Mech. 209, 405–433. https://doi.org/10.1017/S0022112089003162
Ryu, Y., Chang, K.A., Mercier, R., 2007. Runup and green water velocities due to breaking wave impinging and overtopping. Exp. Fluids 43, 555–567. https://doi.org/10.1007/s00348-007-0332-0
Scarfe, B.E., Elwany, M.H.S., Mead, S.T., Black, K.P., 2003. The Science of surfing waves and surfing breaks - A review.
Scarfe, B.E., Healy, T.R., Rennie, H.G., Mead, S.T., 2009. Sustainable management of surfing breaks: Case studies and recommendations. J. Coast. Res. 25, 684–703. https://doi.org/10.2112/08-0999.1
Shemdin, O.H., Hsu, E.Y., 1967. The dynamics of wind in the vicinity of progressive water waves. Coast. Eng. Proc. 30, 403–416. https://doi.org/10.9753/icce.v10.24
Sheng, W., Alcorn, R., Lewis, T., 2014. Physical modelling of wave energy converters. Ocean Eng. 84, 29–36. https://doi.org/10.1016/j.oceaneng.2014.03.019
Smagorinsky, J., 1963. General circulation experiments with the primitive equation. Mon. Weather Rev. 91, 99–164. https://doi.org/10.1126/science.12.306.731-a
Song, J.B., Banner, M.L., 2002. On determining the onset and strength of breaking for deep water waves. Part I: Unforced irrotational wave groups. J. Phys. Oceanogr. 32, 2541–2558. https://doi.org/10.1175/1520-0485-32.9.2541
Soper, H.E., Young, A.W., Cave, B.M., Lee, A., Pearson, K., 1917. On the Distribution of the Correlation Coefficient in Small Samples. Appendix II to the Papers of “Student” and R. A. Fisher. Biometrika 11, 328. https://doi.org/10.2307/2331830
Stanton, T., Marshall, D., Houghton, R., 1932. The growth of waves on water due to the action of the wind. Proc. R. Soc. London. Ser. A, Contain. Pap. a Math. Phys. Character 137, 283–293. https://doi.org/10.1098/rspa.1932.0136
Sverdrup, H.U., Munk, W.H., 1947. Wind, Sea, and Swell: Theory of relations for forecasting. U.S Navy Hydrogr. Off. 44.
Tian, Z., Choi, W., 2013. Evolution of deep-water waves under wind forcing and wave breaking effects: Numerical simulations and experimental assessment. Eur. J. Mech. B/Fluids 41, 11–22. https://doi.org/10.1016/j.euromechflu.2013.04.001
Tian, Z., Perlin, M., Choi, W., 2010. Energy dissipation in two-dimensional unsteady plunging breakers and an eddy viscosity model. J. Fluid Mech. 655, 217–257. https://doi.org/10.1017/S0022112010000832
Ting, F.C.K., Kirby, J.T., 1994. Observation of undertow and turbulence in a laboratory surf zone. Coast. Eng. 24, 51–80. https://doi.org/10.1016/0378-3839(94)90026-4
Titov, V. V., Synolakis, C.E., 1998. Numerical modeling of tidal wave runup. J. Waterw. Port, Coastal, Ocean Eng. 124, 157–171. https://doi.org/10.1061/(asce)0733-950x(1998)124:4(157)
Titov, V. V, Synolakis, C.E., 1995. Modeling of breaking and nonbreaking Long-Wave evolution and runup using VTCS-2. J. Waterw. Port, Coastal, Ocean Eng. 121, 308–316. https://doi.org/10.1061/(asce)0733-950x(1995)121:6(308)
Troch, P., De Rouck, J., 1998. Development of two-dimensional numerical wave flume for wave interaction with rubble mound breakwaters, in: Coastal Engineering. pp. 1638–1649.
Ursell, F., 1956. Wave generation by wind, in: Surveys in Mechanics (Ed. Batchelor, G.K.). Cambridge Univ. Press, Cambridge. pp. 216–249.
Veeramony, J., Svendsen, I.A., 1998. Boussinesq model for breaking waves: comparisons with experiments. Proc. Coast. Eng. Conf. 1, 258–271. https://doi.org/10.1061/9780784404119.018
Vollestad, P., Ayati, A.A., Jensen, A., 2019. Experimental investigation of intermittent airflow separation and microscale wave breaking in wavy two-phase pipe flow. J. Fluid Mech. 878, 796–819. https://doi.org/10.1017/jfm.2019.660
Vollestad, P., Jensen, A., 2021. Modification of airflow structure due to wave breaking on a submerged topography. Boundary-Layer Meteorol. 180, 507–526. https://doi.org/10.1007/s10546-021-00631-3
Voorde, M. ten, 2009. Contribution to the design of Multi-Functional Artificial Reefs.
Vuong, T.H.N., Wu, T.R., Wang, C.Y., Chu, C.R., 2020. Modeling the slump-type landslide tsunamis part II: Numerical simulation of tsunamis with Bingham landslide model. Appl. Sci. 10, 1–23. https://doi.org/10.3390/app10196872
WAMDI Group, 1988. The WAM model -A third generation ocean wave prediction model 18, 1775–1810.
Ward, D.L., Wibner, C.G., Zhang, J., 1998. Runup on coastal revetments under the influence of onshore wind. J. Coast. Res. 14, 1325–1333.
Watanabe, Y., Saeki, H., 1999. Three-dimensional large eddy simulation of breaking waves. Coast. Eng. J. 41, 281–301. https://doi.org/10.1142/s0578563499000176
Watanabe, Y., Saeki, H., Hosking, R.J., 2005. Three-dimensional vortex structures under breaking waves. J. Fluid Mech. 545, 291–328. https://doi.org/10.1017/S0022112005006774
Willmott, C.J., Matsuura, K., 2005. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 30, 79–82. https://doi.org/10.3354/cr030079
Wu, C.H., Nepf, H.M., 2002. Breaking criteria and energy losses for three-dimensional wave breaking. J. Geophys. Res. Ocean. 107. https://doi.org/10.1029/2001jc001077
Wu, T.-R., Lo, H.-Y., Tsai, Y.-L., Ko, L.-H., Chuang, M.-H., Liu, P.L.-F., 2021. Solitary Wave Interacting with a Submerged Circular Plate. J. Waterw. Port, Coastal, Ocean Eng. 147, 1–21. https://doi.org/10.1061/(asce)ww.1943-5460.0000605
Wu, T.R., 2004. A numerical study of three-dimensional breaking waves and turbulence effects. Cornell Univ. 2004.
Wu, T.R., Chu, C.R., Huang, C.J., Wang, C.Y., Chien, S.Y., Chen, M.Z., 2014. A two-way coupled simulation of moving solids in free-surface flows. Comput. Fluids 100, 347–355. https://doi.org/10.1016/j.compfluid.2014.05.010
Wu, T.R., Ho, T.C., 2011. High resolution tsunami inversion for 2010 Chile earthquake. Nat. Hazards Earth Syst. Sci. 11, 3251–3261. https://doi.org/10.5194/nhess-11-3251-2011
Wu, T.R., Huang, C.J., Chuang, M.H., Wang, C.Y., Chu, C.R., 2011. Dynamic coupling of multi-phase fluids with a moving obstacle. J. Mar. Sci. Technol. 19, 643–650. https://doi.org/10.51400/2709-6998.2206
Wu, T.R., Huang, H.C., 2009. Modeling tsunami hazards from Manila trench to Taiwan. J. Asian Earth Sci. 36, 21–28. https://doi.org/10.1016/j.jseaes.2008.12.006
Wu, T.R., Vuong, T.H.N., Lin, J.W., Chu, C.R., Wang, C.Y., 2018. Three-Dimensional Numerical Study on the Interaction between Dam-Break Wave and Cylinder Array. J. Earthq. Tsunami 12, 1–35. https://doi.org/10.1142/S1793431118400079
Xie, Z., 2014. Numerical modelling of wind effects on breaking solitary waves. Eur. J. Mech. B/Fluids 43, 135–147. https://doi.org/10.1016/j.euromechflu.2013.08.001
Yan, S., Ma, Q.W., 2010. Numerical simulation of interaction between wind and 2D freak waves. Eur. J. Mech. B/Fluids 29, 18–31. https://doi.org/10.1016/j.euromechflu.2009.08.001
Yan, B., Luo, M., Bai, W., 2019. An experimental and numerical study of plunging wave impact on a box-shape structure. Mar. Struct. 66, 272–287. https://doi.org/10.1016/j.marstruc.2019.05.003
Yang, Z., Deng, B.Q., Shen, L., 2018. Direct numerical simulation of wind turbulence over breaking waves. J. Fluid Mech. 850, 120–155. https://doi.org/10.1017/jfm.2018.466
Yang, Z., Liu, P.L.F., 2022. Depth-integrated wave-current models. Part 2. Current with an arbitrary profile. J. Fluid Mech. 936. https://doi.org/10.1017/jfm.2022.42
Yang, Z.T., Liu, P.L.F., 2019. Depth-integrated wave-current models. Part 1. Two-dimensional formulation and applications. J. Fluid Mech. 883. https://doi.org/10.1017/jfm.2019.831
Yim, S.C., Yuk, D., Panizzo, A., Di Risio, M., Liu, P.L.-F., 2008. Numerical Simulations of Wave Generation by a Vertical Plunger Using RANS and SPH Models. J. Waterw. Port, Coastal, Ocean Eng. 134, 143–159. https://doi.org/10.1061/(asce)0733-950x(2008)134:3(143)
Yoon, S.B., Liu, P.L.F., 1989. Interactions of currents and weakly nonlinear water waves in shallow water. J. Fluid Mech. 205, 397–419. https://doi.org/10.1017/S0022112089002089
Zarruk, G.A., Cowen, E.A., Wu, T.R., Liu, P.L.F., 2015. Vortex shedding and evolution induced by a solitary wave propagating over a submerged cylindrical structure. J. Fluids Struct. 52, 181–198. https://doi.org/10.1016/j.jfluidstructs.2014.11.001
Zhiyin, Y., 2015. Large-eddy simulation: Past, present and the future. Chinese J. Aeronaut. 28, 11–24. https://doi.org/10.1016/j.cja.2014.12.007
Zou, Q., Chen, H., 2017. Wind and current effects on extreme wave formation and breaking. J. Phys. Oceanogr. 47, 1817–1841. https://doi.org/10.1175/JPO-D-16-0183.1 |