博碩士論文 108821004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:98 、訪客IP:18.118.12.50
姓名 張騰元(Teng-Yuan Chang)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 利用果蠅大腸癌模型探討左旋硒代胱胺酸之抗癌效果
(Investigate the effect of L-Selenocysteine as an anticancer agent using Drosophila colorectal cancer model)
相關論文
★ 使用果蠅作為模型來研究不同脂肪來源的高脂肪飲食的影響和潛在的抗肥胖療法★ 研究雙特松對HepG2細胞之DNA修復的影響
★ 利用人類腎臟近曲小管表皮細胞建立三維細胞培養模型★ 脂肪酸特異互養棲熱菌酮醇酸還原異構酶之晶體結構及活性分析
★ 以桿狀病毒載體系統 建構與異源表達果蠅Zelda基因及其功能分析★ 測試以異位表達 Zelda 之 S2 細胞為平台進行 STARR-seq 分析 Zelda 依賴增強子活性
★ 以重組桿狀病毒表達系統建構果蠅Zelda基因 及其交互作用分子之篩選★ 製作 anti-Zelda antibody 與分析 Zelda 表現量
★ 透過免疫共沉澱和質譜分析鑑定 Zelda 輔助因子★ 異位表達 Zelda 對 S2 細胞染色質景觀重塑的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-27以後開放)
摘要(中) 硒代胱胺酸(Selenocysteine, SeC)是一種含有重要微量營養素硒(Selenium, Se) 的化合物,近年來陸續有研究指出硒代胱胺酸具有抗癌的潛力。SeC對多種癌細胞表現出選擇性毒性(selective toxicity),主要透過調控活性氧化物(Reactive oxygen species, ROS)引發細胞凋亡機制,特別是具有較高抗藥性的癌細胞,對硒化物更敏感,但在正常細胞中則表現出較低的毒性。然而,硒代胱胺酸作用於癌細胞的機制尚不明確,臨床實驗的結果也不具一致性,推論與劑量、硒化物種類和遺傳因子有關。此外許多癌症類型,例如大腸直腸癌(colorectal cancer, CRC)、其遺傳複雜性和異質性也使其治療更加複雜與挑戰。
為了釐清硒代胱胺酸的機制,我們根據文獻以果蠅建立帶有致癌基因Ras,及抑癌基因PTEN, APC, P53之單一及多基因變異組合的大腸癌模型,進行高通量全動物模型(whole animal model)研究。果蠅大腸癌模型表現出易於觀察和可量化的腫瘤特徵,包括較高的早期死亡率、成蟲壽命時間減少、腸道類腫瘤的組織和腹腔的轉移。我們將此模型培養至含有不同濃度的SeC(50, 100, 200, 500 μM)食物中進行治療測試,並與臨床使用的抗癌藥物Cisplatin進行療效比對,結果顯示200 μM SeC在降低幼蟲期的死亡率、延長成蟲壽命的治療效果表現最佳,並且能有效得使腸道中的類腫瘤組織縮小。我們也利用此模型與大量的變異基因果蠅品系進行遺傳分析,來了解哪些信號通路會影響SeC作用,並篩選出會對SeC治療效果造成負面影響的anti-targets,期找出更優化的治療策略,促進精準治療。
摘要(英) Selenocysteine (SeC), which contains an essential micronutrient selenium (Se), has been reported to be a potential anticancer reagent. Se-containing compounds exhibit selective toxicity to multiple cancer cell lines, mainly through ROS-induced apoptosis, yet, less toxicity to normal cell. Cancer cells with higher resistance to cytostatic drugs are more sensitive to Se compounds. However, the functional mechanism of SeC is still unclear. Moreover, clinical results are inconsistent and inconclusive, partly due to dosage, different Se compounds, and genetic factors. The genetic complexity and heterogeneity of certain cancer types also make therapy discovery more challenging, for example colorectal cancer (CRC).
To gain more information, we use reported Drosophila colorectal cancer (CRC) models driven by single to triple mutants of Ras, PTEN, APC, and P53 to test the effects of SeC in a whole animal model. CRC model flies displayed observable and quantifiable phenotypes, larval lethality, shorter lifespan and gut tumor-like lesions. We treated CRC fly with different concentration of SeC (50, 100, 200, 500 μM) and compared with anticancer drug cisplatin, and examined the phenotypes aforementioned. 200 μM SeC showed greater effects in rescuing larval lethality and extending lifespan. The volumes of gut lesions were also reduced. We also performed genetic analysis by crossing with various mutant flies, aiming to identify the pathways which might influence SeC effects. This allows us to discover the “anti-targets” which reduced the efficacy of SeC in curing CRC models. In all, this study provides a platform for characterize the biological responses of Se compounds, in hope to optimize the genetic background of SeC traetment.
關鍵字(中) ★ 左旋硒代胱胺酸 關鍵字(英) ★ L-Selenocysteine
論文目次 中文摘要.........................................................................................................................I
Abstract..........................................................................................................................II
致謝...............................................................................................................................III
目錄...............................................................................................................................IV
圖目錄..........................................................................................................................VI
第一章緒論....................................................................................................................1
1.1 果蠅遺傳實驗的優勢.................................................................................1
1.2 果蠅的癌症模式及藥物發展的應用.........................................................1
1.2.1 果蠅的甲狀腺癌症模型及藥物發展..............................................2
1.2.2 果蠅的大腸癌癌症模型及藥物發展..............................................3
1.3 硒半胱氨酸.................................................................................................5
1.4 研究目的.....................................................................................................7
第二章實驗材料及方法................................................................................................8
2.1 實驗果蠅品系.............................................................................................8
2.2 果蠅雜交實驗.............................................................................................8
2.3 果蠅食物製備.............................................................................................8
2.4 L-Selenocysteine..........................................................................................8
2.4.1 L-Selenocysteine製備.......................................................................8
2.4.2 L-Selenocysteine果蠅食物製備.......................................................8
2.5 果蠅大腸癌症模型測驗.............................................................................8
2.5.1 幼蟲期死亡率測驗..........................................................................9
2.5.2 成蟲期壽命測驗..............................................................................9
2.6 成蟲期腸道性狀測驗.................................................................................9
2.6.1 果蠅模型準備..................................................................................9
2.6.2 免疫染色..........................................................................................9
2.6.3 果蠅中腸組織性狀量化統計..........................................................9
第三章實驗結果...........................................................................................................11
3.1 建立果蠅大腸癌模型及藥物測試............................................................11
3.1.1 以幼蟲期及蛹期致死率測試果蠅大腸癌模型.............................13
3.1.2 測試藥物對果蠅生長發育的影響.................................................15
3.1.3 200 μM SeC對於提升果蠅大腸癌模型的存活率具有較佳效果.15
3.2 檢測不同的果蠅大腸癌模型對200 μM SeC的反應.............................19
3.2.1 200 μM SeC對於不同果蠅大腸癌模型的存活率之影響.............19
3.2.2 200 μM SeC對於不同果蠅大腸癌模型的類腫瘤表現型之影響.19
3.2.3 P53基因變異果蠅大腸癌模型對SeC表現出較差的治療效果..24
3.2.4 提高P53基因表現可以促進SeC對果蠅大腸癌模型的
治療效果...........................................................................................24
3.3 檢視SeC對果蠅大腸癌模型的基因表現之影響...................................25
3.4以大腸癌模型為平台進行遺傳分析篩選SeC的pro-targets及
anti- targets…………….....................................................................…...25
3.4.1 Nrf2/Keap1對SeC作用之影響......................................................25
3.4.2 抗氧化系統對SeC作用之影響.....................................................28
3.4.3 內質網壓力及粒線體功能失調對SeC作用之影響....................28
3.4.4 其他途徑對SeC作用之影響.........................................................29
第四章實驗討論............................................................................................................32
參考文獻........................................................................................................................37
附錄圖............................................................................................................................40
附錄表............................................................................................................................42
參考文獻 伍、參考資料

1. Ugur, B., K. Chen, and H.J. Bellen, Drosophila tools and assays for the study of human diseases. Dis Model Mech, 2016. 9(3): p. 235-44.
2. Vidal, M., et al., ZD6474 suppresses oncogenic RET isoforms in a Drosophila model for type 2 multiple endocrine neoplasia syndromes and papillary thyroid carcinoma. Cancer Res, 2005. 65(9): p. 3538-41.
3. Sonoshita, M., et al., A whole-animal platform to advance a clinical kinase inhibitor into new disease space. Nature Chemical Biology, 2018. 14(3): p. 291-298.
4. Bangi, E., et al., Functional exploration of colorectal cancer genomes using Drosophila. Nat Commun, 2016. 7: p. 13615.
5. Bangi, E., et al., A personalized platform identifies trametinib plus zoledronate for a patient with KRAS-mutant metastatic colorectal cancer. Science Advances, 2019. 5(5): p. eaav6528.
6. Gondal, M.N., et al., <em>In silico Drosophila Patient Model</em> Reveals Optimal Combinatorial Therapies for Colorectal Cancer. bioRxiv, 2020: p. 2020.08.31.274829.
7. Ferreira, R.L.U., et al., Selenium in Human Health and Gut Microflora: Bioavailability of Selenocompounds and Relationship With Diseases. Front Nutr, 2021. 8: p. 685317.
8. Newton, T.D. and M.D. Pluth, Development of a hydrolysis-based small-molecule hydrogen selenide (H(2)Se) donor. Chem Sci, 2019. 10(46): p. 10723-10727.
9. Wang, R.H., Y.H. Chu, and K.T. Lin, The Hidden Role of Hydrogen Sulfide Metabolism in Cancer. Int J Mol Sci, 2021. 22(12).
10. Wu, X., et al., Pharmacological mechanisms of the anticancer action of sodium selenite against peritoneal cancer in mice. Pharmacol Res, 2019. 147: p. 104360.
11. Lim, J.K.M., et al., Cystine/glutamate antiporter xCT (SLC7A11) facilitates oncogenic RAS transformation by preserving intracellular redox balance. Proc Natl Acad Sci U S A, 2019. 116(19): p. 9433-9442.
12. Raninga, P.V., et al., Inhibition of thioredoxin 1 leads to apoptosis in drug-resistant multiple myeloma. Oncotarget, 2015. 6(17): p. 15410-24.
13. Raninga, P.V., et al., TrxR1 inhibition overcomes both hypoxia-induced and acquired bortezomib resistance in multiple myeloma through NF-кβ inhibition. Cell Cycle, 2016. 15(4): p. 559-72.
14. Fan, C.D., et al., Selenocysteine induces apoptosis in human glioma cells: evidence for TrxR1-targeted inhibition and signaling crosstalk. Sci Rep, 2017. 7(1): p. 6465.
15. Hsu, W.L., et al., Blockage of Nrf2 and autophagy by L-selenocystine induces selective death in Nrf2-addicted colorectal cancer cells through p62-Keap-1-Nrf2 axis. Cell Death Dis, 2022. 13(12): p. 1060.
16. Pons, D.G., et al., Micronutrients Selenomethionine and Selenocysteine Modulate the Redox Status of MCF-7 Breast Cancer Cells. Nutrients, 2020. 12(3).
17. Martorell, O., et al., Conserved mechanisms of tumorigenesis in the Drosophila adult midgut. PLoS One, 2014. 9(2): p. e88413.
18. Lisek, K., et al., Mutant p53 tunes the NRF2-dependent antioxidant response to support survival of cancer cells. Oncotarget, 2018. 9(29): p. 20508-20523.
19. Ingold, I., et al., Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis. Cell, 2018. 172(3): p. 409-422.e21.
20. Liu, L., et al., The Glia-Neuron Lactate Shuttle and Elevated ROS Promote Lipid Synthesis in Neurons and Lipid Droplet Accumulation in Glia via APOE/D. Cell Metab, 2017. 26(5): p. 719-737.e6.
21. Dar, A.C., et al., Chemical genetic discovery of targets and anti-targets for cancer polypharmacology. Nature, 2012. 486(7401): p. 80-4.
22. Köberle, B. and S. Schoch, Platinum Complexes in Colorectal Cancer and Other Solid Tumors. Cancers (Basel), 2021. 13(9).
23. Jiang, W., et al., Aspirin enhances the sensitivity of colon cancer cells to cisplatin by abrogating the binding of NF-κB to the COX-2 promoter. Aging (Albany NY), 2020. 12(1): p. 611-627.
24. Long, H., C.T. Hu, and C.F. Weng, Antrodia Cinnamomea Prolongs Survival in a Patient with Small Cell Lung Cancer. Medicina (Kaunas), 2019. 55(10).
25. Ye, J., et al., Antrodia cinnamomea polysaccharide improves liver antioxidant, anti-inflammatory capacity, and cecal flora structure of slow-growing broiler breeds challenged with lipopolysaccharide. Front Vet Sci, 2022. 9: p. 994782.
26. Lin, I.Y., et al., CCM111, the water extract of Antrodia cinnamomea, regulates immune-related activity through STAT3 and NF-κB pathways. Sci Rep, 2017. 7(1): p. 4862.
27. Cao, S., et al., Se-methylselenocysteine offers selective protection against toxicity and potentiates the antitumour activity of anticancer drugs in preclinical animal models. Br J Cancer, 2014. 110(7): p. 1733-43.
28. Marei, H.E., et al., p53 signaling in cancer progression and therapy. Cancer Cell International, 2021. 21(1): p. 703.
29. Liu, X., et al., Functional Role of p53 in the Regulation of Chemical-Induced Oxidative Stress. Oxid Med Cell Longev, 2020. 2020: p. 6039769.
30. Panieri, E., et al., The NRF2/KEAP1 Axis in the Regulation of Tumor Metabolism: Mechanisms and Therapeutic Perspectives. Biomolecules, 2020. 10(5).
31. Saito, T., et al., p62/Sqstm1 promotes malignancy of HCV-positive hepatocellular carcinoma through Nrf2-dependent metabolic reprogramming. Nature Communications, 2016. 7(1): p. 12030.
32. Meng, C., et al., The deubiquitinase USP11 regulates cell proliferation and ferroptotic cell death via stabilization of NRF2 USP11 deubiquitinates and stabilizes NRF2. Oncogene, 2021. 40(9): p. 1706-1720.
33. Gan, B., Mitochondrial regulation of ferroptosis. J Cell Biol, 2021. 220(9).
34. Lee, Y.S., et al., Ferroptosis-Induced Endoplasmic Reticulum Stress: Cross-talk between Ferroptosis and Apoptosis. Mol Cancer Res, 2018. 16(7): p. 1073-1076.
指導教授 粘仲毅(Chung-Yi Nien) 審核日期 2023-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明