博碩士論文 108821012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:138 、訪客IP:18.220.78.7
姓名 陳詣淇(Yi-Qi Chen)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 人工合成型丹蔘化合物對人類前列腺癌細胞生長及轉移的影響
(Effects of the synthetic Danshen compounds on human prostate cancer cells growth and metastasis)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-9-30以後開放)
摘要(中) 前列腺癌 (PCa) 是男性第二常見的癌症,佔男性癌症診斷的 15% 和所有癌症病例的 8%。丹蔘(Salvia miltiorrhiza Bunge)在中藥中被廣泛用於治療冠狀動脈疾病和腦血管疾病,且副作用較小,並被發現可抑制前列腺癌的細胞生長、遷移和侵襲。在本研究中我們選擇了三種合成丹蔘化合物,為化合物 4、5、6,其化學結構與天然丹蔘化合物相似。我們假設化合物 4、5、6 可能對前列腺癌具有抗癌活性。首先我們觀察到化合物 4、5、6 以劑量和時間依賴性方式降低雄激素依賴性 (LNCaP-FGC) 和雄激素非依賴性 (PC-3, DU145) 人類前列腺癌細胞的細胞數及細胞存活率。此外利用 BrdU 細胞增殖測定以及細胞週期分析發現到化合物4、5、6 可以影響前列腺癌 DNA 合成能力和 G1 phase,然而這些數據表明化合物 4、5、6 對前列腺癌細胞的生長增殖具有抑制作用。當檢測信號蛋白時,我們發現化合物 4、5、6 在 LNCaP-FGC 和 PC-3 細胞中抑制 AKT 的磷酸化,這些數據表明化合物 4、5、6 可能通過 AKT 途徑抑制前列腺癌細胞的生長。此外,我們發現化合物 4、5、6 抑制了 LNCaP-FGC 細胞中雄激素受體 (AR) 蛋白的表達,並且該化合物顯著抑制了 PC-3、DU-145 細胞的轉移及侵入。總之,化合物 4、5、6 通過 AR 和 AKT 途徑抑制雄激素依賴性前列腺癌細胞的生長,以及通過 AKT 或細胞週期蛋白途徑抑制雄激素非依賴性前列腺癌細胞的生長。
摘要(英) Prostate cancer (PCa) is the second most commonly diagnosed cancer in men, representing 15% of male cancer diagnosis and 8% of all cancer cases. Danshen (Salvia miltiorrhiza Bunge) has been widely used in traditional Chinese medicine for the treatment of coronary artery disease and cerebrovascular diseases with minimal side effects, and it has been found to inhibit cell growth, migration and invasion in prostate cancer. Recently, we selected a synthetic compound named compound 4, 5, 6, which has a chemical structure similar to native Danshen compounds. We hypothesized that compound 4, 5, 6, may have anti-cancer activity against prostate cancer. First, we observed that compound 4, 5, 6 reduced the cell number and cell viability in androgen-dependent (LNCaP-FGC) and androgen-independent (PC-3, DU145) human prostate cancer cells in in high doses and low doses over time. In addition, using BrdU cell proliferation assay and cell cycle analysis, it was found that compounds 4, 5, and 6 can affect the DNA synthesis capacity and G1 phase of prostate cancer cells. When signaling proteins were examined, we found that compound 4, 5, 6 suppressed phosphorylation of AKT in both LNCaP-FGC and PC-3 cells. These data suggest that compound 4, 5, 6 may inhibit prostate cancer cell growth through the AKT pathway. Moreover, we discovered that compound 4, 5, 6 suppressed the expression of androgen receptor (AR) protein in LNCaP-FGC cells and that the compound significantly suppressed the migration of PC-3 cells. In conclusions, compound 4, 5, 6 suppressed growth of androgen-dependent prostate cancer cells through the AR and AKT pathways, as well as inhibiting growth of androgen-independent prostate cancer cells through the AKT or cell cycle protein pathway.
關鍵字(中) ★ 前列腺癌
★ 人工合成型丹蔘化合物
★ 生長
★ 轉移
關鍵字(英) ★ Prostate cancer
★ Synthetic Danshen compounds
★ Growth
★ Metastasis
論文目次 中文摘要 I
Abstract IV
致謝 V
目錄 VII
英文縮寫對照表 X
一、 緒論 1
1-1 前列腺癌 1
1-1-1 癌症 1
1-1-2 前列腺的構造及功能 1
1-1-5 前列腺癌細胞的種類 4
1-2 人工合成型丹蔘化合物 4
1-2-1 化學結構與分子量之差異 4
1-3 Activating transcription factor 3 (ATF3) 5
1-4 Androgen receptor (AR) 訊息傳遞 7
1-5 Phosphatidylinositol 3-kinase-AKT (PI3K-AKT)訊息傳遞 7
1-5 癌症與細胞週期 8
1-6上皮間質轉化 (Epithelial-Mesenchymal Transition, EMT) 10
1-7 MMP-2/MMP-9 11
1-8 研究動機及目的 13
二、 材料與方法 14
2-1 實驗材料 14
2.2 細胞培養 (Cell culture) 14
2.4 解凍細胞 (unfreeze cell) 16
2.5 細胞數計數分析 (Cell number assay) 16
2.6 細胞存活率分析 (Cell viability assay) 16
2.7 細胞增殖分析 (BrdU incorporation assay) 17
2.8 軟瓊脂群落形成測定 (Soft agar colony formation assay) 17
2.8.1 溶液配製 18
2.8.2 下層膠 0.5% agarose 配置 18
2.8.3 上層膠 0.3% agarose (含有細胞)配置 18
2.8.4 細胞集落染色 19
2.8.5 統計群落 19
2.9 傷口癒合爬行試驗 (Wounding healing migration assay) 19
2.10 細胞侵入分析 (Boyden chamber invasion assay) 20
2.11 西方墨點法 (Western Blot) 21
2.11.1 樣品收集 21
2.11.2 配置12% SDS-PAGE 22
2.11.4 蛋白質轉漬(Protein transfer) 22
2.11.5 封閉(Blocking)和一級抗體 (Antibody) 辨識 23
2.11.6 抗體脫離 (Stripping) 24
2.11.7 掃描及量化 24
2.12 酶譜法(Zymography assay) 24
2.12.1 樣品收集 24
2.12.4 SDS-polyacryalmide 膠體電泳 25
2.12.5 活化 MMP-2 和 MMP-9 25
2.12.6 染色 25
2.12.7 掃描與量化 25
2-13 細胞週期測試 (Cell cycle) 26
2-14 統計分析 (Statistical analysis) 26
三、實驗結果 28
四、討論 55
五、結論 60
六、參考文獻 61
八、圖目錄 82
九、附錄 138
參考文獻 1 衛生福利部. (2021).
2 Institute., N. C. What Is Cancer?, <https://www.cancer.gov/about-cancer/understanding/what-is-cancer> (2021).
3 Eccles, S. A. & Welch, D. R. Metastasis: recent discoveries and novel treatment strategies. Lancet 369, 1742-1757, doi:10.1016/s0140-6736(07)60781-8 (2007).
4 Billington, A. Prostate disease. Nurs Stand 13, 49-53; quiz 54-45, doi:10.7748/ns1999.03.13.25.49.c7497 (1999).
5 Hoffman, R. M. et al. Racial and Ethnic Differences in Advanced-Stage Prostate Cancer: the Prostate Cancer Outcomes Study. JNCI: Journal of the National Cancer Institute 93, 388-395, doi:10.1093/jnci/93.5.388 (2001).
6 Nelson, W. & De Matzo, A. lsaacs WB. Prostate cancer N Engl I Med 349, 366-381 (2003).
7 Martin, R. M., Vatten, L., Gunnell, D., Romundstad, P. & Nilsen, T. I. Lower urinary tract symptoms and risk of prostate cancer: the HUNT 2 Cohort, Norway. Int J Cancer 123, 1924-1928, doi:10.1002/ijc.23713 (2008).
8 Buntinx, F. & Wauters, H. The diagnostic value of macroscopic haematuria in diagnosing urological cancers: a meta-analysis. Fam Pract 14, 63-68, doi:10.1093/fampra/14.1.63 (1997).
9 Merriel, S. W. D., Funston, G. & Hamilton, W. Prostate Cancer in Primary Care. Adv Ther 35, 1285-1294, doi:10.1007/s12325-018-0766-1 (2018).
10 Wang, D. & Tindall, D. J. Androgen action during prostate carcinogenesis. Methods Mol Biol 776, 25-44, doi:10.1007/978-1-61779-243-4_2 (2011).
11 Schatzl, G. et al. Association of polymorphisms within androgen receptor, 5alpha-reductase, and PSA genes with prostate volume, clinical parameters, and endocrine status in elderly men. Prostate 52, 130-138, doi:10.1002/pros.10101 (2002).
12 Singh, M. et al. Stromal androgen receptor in prostate development and cancer. Am J Pathol 184, 2598-2607, doi:10.1016/j.ajpath.2014.06.022 (2014).
13 Corona, G., Baldi, E. & Maggi, M. Androgen regulation of prostate cancer: where are we now? J Endocrinol Invest 34, 232-243, doi:10.1007/bf03347072 (2011).
14 Patil, N. & Gaitonde, K. Clinical Perspective of Prostate Cancer. Top Magn Reson Imaging 25, 103-108, doi:10.1097/rmr.0000000000000091 (2016).
15 Teo, M. Y., Rathkopf, D. E. & Kantoff, P. Treatment of Advanced Prostate Cancer. Annu Rev Med 70, 479-499, doi:10.1146/annurev-med-051517-011947 (2019).
16 Shim, M., Bang, W. J., Oh, C. Y., Lee, Y. S. & Cho, J. S. Effectiveness of three different luteinizing hormone-releasing hormone agonists in the chemical castration of patients with prostate cancer: Goserelin versus triptorelin versus leuprolide. Investig Clin Urol 60, 244-250, doi:10.4111/icu.2019.60.4.244 (2019).
17 Namekawa, T., Ikeda, K., Horie-Inoue, K. & Inoue, S. Application of Prostate Cancer Models for Preclinical Study: Advantages and Limitations of Cell Lines, Patient-Derived Xenografts, and Three-Dimensional Culture of Patient-Derived Cells. Cells 8, doi:10.3390/cells8010074 (2019).
18 Kaighn, M. E., Narayan, K. S., Ohnuki, Y., Lechner, J. F. & Jones, L. W. Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol 17, 16-23 (1979).
19 Mickey, D. D. et al. Heterotransplantation of a human prostatic adenocarcinoma cell line in nude mice. Cancer Res 37, 4049-4058 (1977).
20 Alimirah, F., Chen, J., Basrawala, Z., Xin, H. & Choubey, D. DU-145 and PC-3 human prostate cancer cell lines express androgen receptor: implications for the androgen receptor functions and regulation. FEBS Lett 580, 2294-2300, doi:10.1016/j.febslet.2006.03.041 (2006).
21 Cheng, C. F. et al. Adipocyte browning and resistance to obesity in mice is induced by expression of ATF3. Commun Biol 2, 389, doi:10.1038/s42003-019-0624-y (2019).
22 Ku, H.-C., Chan, T.-Y., Chung, J.-F., Kao, Y.-H. & Cheng, C.-F. The ATF3 inducer protects against diet-induced obesity via suppressing adipocyte adipogenesis and promoting lipolysis and browning. Biomedicine & Pharmacotherapy 145, 112440 (2022).
23 Gokulnath, M., Partridge, N. & Selvamurugan, N. Runx2, a target gene for activating transcription factor-3 in human breast cancer cells. Tumor Biology 36, 1923-1931 (2015).
24 Hasim, M. S., Nessim, C., Villeneuve, P. J., Vanderhyden, B. C. & Dimitroulakos, J. Activating transcription factor 3 as a novel regulator of chemotherapy response in breast cancer. Translational Oncology 11, 988-998 (2018).
25 Wang, C.-M. & Yang, W.-H. Loss of SUMOylation on ATF3 inhibits proliferation of prostate cancer cells by modulating CCND1/2 activity. International Journal of Molecular Sciences 14, 8367-8380 (2013).
26 Wang, H. et al. The stress response mediator ATF3 represses androgen signaling by binding the androgen receptor. Molecular and cellular biology 32, 3190-3202 (2012).
27 Wang, Z. et al. Loss of ATF3 promotes Akt activation and prostate cancer development in a Pten knockout mouse model. Oncogene 34, 4975-4984 (2015).
28 Germain, C. S. et al. Cisplatin induces cytotoxicity through the mitogen-activated protein kinase pathways ana activating transcription factor 3. Neoplasia 12, 527-538 (2010).
29 Heinlein, C. A. & Chang, C. Androgen receptor (AR) coregulators: an overview. Endocrine reviews 23, 175-200 (2002).
30 Heinlein, C. A. & Chang, C. Androgen receptor in prostate cancer. Endocrine reviews 25, 276-308 (2004).
31 Kuo, Y.-Y. et al. Caffeic acid phenethyl ester suppresses androgen receptor signaling and stability via inhibition of phosphorylation on Ser81 and Ser213. Cell Communication and Signaling 17, 1-10 (2019).
32 Jacob, A., Raj, R., Allison, D. B. & Myint, Z. W. Androgen receptor signaling in prostate cancer and therapeutic strategies. Cancers 13, 5417 (2021).
33 Porta, C., Paglino, C. & Mosca, A. Targeting PI3K/Akt/mTOR signaling in cancer. Frontiers in oncology 4, 64 (2014).
34 Chang, F. et al. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia 17, 590-603 (2003).
35 Carver, B. S. et al. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer cell 19, 575-586 (2011).
36 Bai, J., Li, Y. & Zhang, G. Cell cycle regulation and anticancer drug discovery. Cancer biology & medicine 14, 348 (2017).
37 Schafer, K. The cell cycle: a review. Veterinary pathology 35, 461-478 (1998).
38 Graña, X. & Reddy, E. P. Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene 11, 211-220 (1995).
39 Malumbres, M. & Barbacid, M. Cell cycle, CDKs and cancer: a changing paradigm. Nature reviews cancer 9, 153-166 (2009).
40 Gomis, R. R. (Nature Publishing Group, 2019).
41 Lai, X. et al. Epithelial-Mesenchymal Transition and Metabolic Switching in Cancer: Lessons From Somatic Cell Reprogramming. Frontiers in Cell and Developmental Biology, 760 (2020).
42 Liu, Y.-N., Liu, Y., Lee, H.-J., Hsu, Y.-H. & Chen, J.-H. Activated androgen receptor downregulates E-cadherin gene expression and promotes tumor metastasis. Molecular and cellular biology 28, 7096-7108 (2008).
43 Grant, C. M. & Kyprianou, N. Epithelial mesenchymal transition (EMT) in prostate growth and tumor progression. Translational andrology and urology 2, 202 (2013).
44 Zhang, L. et al. Type IV collagenase (matrix metalloproteinase-2 and-9) in prostate cancer. Prostate cancer and prostatic diseases 7, 327-332 (2004).
45 Borowicz, S. et al. The soft agar colony formation assay. JoVE (Journal of Visualized Experiments), e51998 (2014).
46 Rodriguez, L. G., Wu, X. & Guan, J.-L. in Cell migration 23-29 (Springer, 2005).
47 Chen, H.-C. in Cell migration 15-22 (Springer, 2005).
48 Kapoor, C., Vaidya, S., Wadhwan, V., Kaur, G. & Pathak, A. Seesaw of matrix metalloproteinases (MMPs). Journal of cancer research and therapeutics 12, 28 (2016).
49 Shorning, B. Y., Dass, M. S., Smalley, M. J. & Pearson, H. B. The PI3K-AKT-mTOR pathway and prostate cancer: at the crossroads of AR, MAPK, and WNT signaling. International Journal of Molecular Sciences 21, 4507 (2020).
50 Rashid, A. et al. Resveratrol enhances prostate cancer cell response to ionizing radiation. Modulation of the AMPK, Akt and mTOR pathways. Radiation oncology 6, 1-12 (2011).
51 Park, H. U. et al. AMP-activated protein kinase promotes human prostate cancer cell growth and survival. Molecular cancer therapeutics 8, 733-741 (2009).
52 Bottone Jr, F. G. et al. The anti-invasive activity of cyclooxygenase inhibitors is regulated by the transcription factor ATF3 (activating transcription factor 3). Molecular cancer therapeutics 4, 693-703 (2005).
53 Edagawa, M. et al. Role of activating transcription factor 3 (ATF3) in endoplasmic reticulum (ER) stress-induced sensitization of p53-deficient human colon cancer cells to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis through up-regulation of death receptor 5 (DR5) by zerumbone and celecoxib. Journal of Biological Chemistry 289, 21544-21561 (2014).
54 Ku, H.-C. & Cheng, C.-F. Master regulator activating transcription factor 3 (ATF3) in metabolic homeostasis and cancer. Frontiers in Endocrinology 11, 556 (2020).
55 Rodríguez-Berriguete, G. et al. MAP kinases and prostate cancer. Journal of signal transduction 2012 (2012).
56 Odero-Marah, V., Hawsawi, O., Henderson, V. & Sweeney, J. Epithelial-mesenchymal transition (EMT) and prostate cancer. Cell & Molecular Biology of Prostate Cancer, 101-110 (2018).
57 Shih, L.-J. et al. Betel nut arecoline induces different phases of growth arrest between normal and cancerous prostate cells through the reactive oxygen species pathway. International journal of molecular sciences 21, 9219 (2020).
58 Knudsen, K., Diehl, J. A., Haiman, C. & Knudsen, E. Cyclin D1: polymorphism, aberrant splicing and cancer risk. Oncogene 25, 1620-1628 (2006).
指導教授 高永旭 鄭敬楓 褚志斌(Yung-Hsi Kao Ching-Feng Cheng Chih-Pin Chuu) 審核日期 2022-9-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明