參考文獻 |
1 衛生福利部. (2021).
2 Institute., N. C. What Is Cancer?, <https://www.cancer.gov/about-cancer/understanding/what-is-cancer> (2021).
3 Eccles, S. A. & Welch, D. R. Metastasis: recent discoveries and novel treatment strategies. Lancet 369, 1742-1757, doi:10.1016/s0140-6736(07)60781-8 (2007).
4 Billington, A. Prostate disease. Nurs Stand 13, 49-53; quiz 54-45, doi:10.7748/ns1999.03.13.25.49.c7497 (1999).
5 Hoffman, R. M. et al. Racial and Ethnic Differences in Advanced-Stage Prostate Cancer: the Prostate Cancer Outcomes Study. JNCI: Journal of the National Cancer Institute 93, 388-395, doi:10.1093/jnci/93.5.388 (2001).
6 Nelson, W. & De Matzo, A. lsaacs WB. Prostate cancer N Engl I Med 349, 366-381 (2003).
7 Martin, R. M., Vatten, L., Gunnell, D., Romundstad, P. & Nilsen, T. I. Lower urinary tract symptoms and risk of prostate cancer: the HUNT 2 Cohort, Norway. Int J Cancer 123, 1924-1928, doi:10.1002/ijc.23713 (2008).
8 Buntinx, F. & Wauters, H. The diagnostic value of macroscopic haematuria in diagnosing urological cancers: a meta-analysis. Fam Pract 14, 63-68, doi:10.1093/fampra/14.1.63 (1997).
9 Merriel, S. W. D., Funston, G. & Hamilton, W. Prostate Cancer in Primary Care. Adv Ther 35, 1285-1294, doi:10.1007/s12325-018-0766-1 (2018).
10 Wang, D. & Tindall, D. J. Androgen action during prostate carcinogenesis. Methods Mol Biol 776, 25-44, doi:10.1007/978-1-61779-243-4_2 (2011).
11 Schatzl, G. et al. Association of polymorphisms within androgen receptor, 5alpha-reductase, and PSA genes with prostate volume, clinical parameters, and endocrine status in elderly men. Prostate 52, 130-138, doi:10.1002/pros.10101 (2002).
12 Singh, M. et al. Stromal androgen receptor in prostate development and cancer. Am J Pathol 184, 2598-2607, doi:10.1016/j.ajpath.2014.06.022 (2014).
13 Corona, G., Baldi, E. & Maggi, M. Androgen regulation of prostate cancer: where are we now? J Endocrinol Invest 34, 232-243, doi:10.1007/bf03347072 (2011).
14 Patil, N. & Gaitonde, K. Clinical Perspective of Prostate Cancer. Top Magn Reson Imaging 25, 103-108, doi:10.1097/rmr.0000000000000091 (2016).
15 Teo, M. Y., Rathkopf, D. E. & Kantoff, P. Treatment of Advanced Prostate Cancer. Annu Rev Med 70, 479-499, doi:10.1146/annurev-med-051517-011947 (2019).
16 Shim, M., Bang, W. J., Oh, C. Y., Lee, Y. S. & Cho, J. S. Effectiveness of three different luteinizing hormone-releasing hormone agonists in the chemical castration of patients with prostate cancer: Goserelin versus triptorelin versus leuprolide. Investig Clin Urol 60, 244-250, doi:10.4111/icu.2019.60.4.244 (2019).
17 Namekawa, T., Ikeda, K., Horie-Inoue, K. & Inoue, S. Application of Prostate Cancer Models for Preclinical Study: Advantages and Limitations of Cell Lines, Patient-Derived Xenografts, and Three-Dimensional Culture of Patient-Derived Cells. Cells 8, doi:10.3390/cells8010074 (2019).
18 Kaighn, M. E., Narayan, K. S., Ohnuki, Y., Lechner, J. F. & Jones, L. W. Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol 17, 16-23 (1979).
19 Mickey, D. D. et al. Heterotransplantation of a human prostatic adenocarcinoma cell line in nude mice. Cancer Res 37, 4049-4058 (1977).
20 Alimirah, F., Chen, J., Basrawala, Z., Xin, H. & Choubey, D. DU-145 and PC-3 human prostate cancer cell lines express androgen receptor: implications for the androgen receptor functions and regulation. FEBS Lett 580, 2294-2300, doi:10.1016/j.febslet.2006.03.041 (2006).
21 Cheng, C. F. et al. Adipocyte browning and resistance to obesity in mice is induced by expression of ATF3. Commun Biol 2, 389, doi:10.1038/s42003-019-0624-y (2019).
22 Ku, H.-C., Chan, T.-Y., Chung, J.-F., Kao, Y.-H. & Cheng, C.-F. The ATF3 inducer protects against diet-induced obesity via suppressing adipocyte adipogenesis and promoting lipolysis and browning. Biomedicine & Pharmacotherapy 145, 112440 (2022).
23 Gokulnath, M., Partridge, N. & Selvamurugan, N. Runx2, a target gene for activating transcription factor-3 in human breast cancer cells. Tumor Biology 36, 1923-1931 (2015).
24 Hasim, M. S., Nessim, C., Villeneuve, P. J., Vanderhyden, B. C. & Dimitroulakos, J. Activating transcription factor 3 as a novel regulator of chemotherapy response in breast cancer. Translational Oncology 11, 988-998 (2018).
25 Wang, C.-M. & Yang, W.-H. Loss of SUMOylation on ATF3 inhibits proliferation of prostate cancer cells by modulating CCND1/2 activity. International Journal of Molecular Sciences 14, 8367-8380 (2013).
26 Wang, H. et al. The stress response mediator ATF3 represses androgen signaling by binding the androgen receptor. Molecular and cellular biology 32, 3190-3202 (2012).
27 Wang, Z. et al. Loss of ATF3 promotes Akt activation and prostate cancer development in a Pten knockout mouse model. Oncogene 34, 4975-4984 (2015).
28 Germain, C. S. et al. Cisplatin induces cytotoxicity through the mitogen-activated protein kinase pathways ana activating transcription factor 3. Neoplasia 12, 527-538 (2010).
29 Heinlein, C. A. & Chang, C. Androgen receptor (AR) coregulators: an overview. Endocrine reviews 23, 175-200 (2002).
30 Heinlein, C. A. & Chang, C. Androgen receptor in prostate cancer. Endocrine reviews 25, 276-308 (2004).
31 Kuo, Y.-Y. et al. Caffeic acid phenethyl ester suppresses androgen receptor signaling and stability via inhibition of phosphorylation on Ser81 and Ser213. Cell Communication and Signaling 17, 1-10 (2019).
32 Jacob, A., Raj, R., Allison, D. B. & Myint, Z. W. Androgen receptor signaling in prostate cancer and therapeutic strategies. Cancers 13, 5417 (2021).
33 Porta, C., Paglino, C. & Mosca, A. Targeting PI3K/Akt/mTOR signaling in cancer. Frontiers in oncology 4, 64 (2014).
34 Chang, F. et al. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia 17, 590-603 (2003).
35 Carver, B. S. et al. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer cell 19, 575-586 (2011).
36 Bai, J., Li, Y. & Zhang, G. Cell cycle regulation and anticancer drug discovery. Cancer biology & medicine 14, 348 (2017).
37 Schafer, K. The cell cycle: a review. Veterinary pathology 35, 461-478 (1998).
38 Graña, X. & Reddy, E. P. Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene 11, 211-220 (1995).
39 Malumbres, M. & Barbacid, M. Cell cycle, CDKs and cancer: a changing paradigm. Nature reviews cancer 9, 153-166 (2009).
40 Gomis, R. R. (Nature Publishing Group, 2019).
41 Lai, X. et al. Epithelial-Mesenchymal Transition and Metabolic Switching in Cancer: Lessons From Somatic Cell Reprogramming. Frontiers in Cell and Developmental Biology, 760 (2020).
42 Liu, Y.-N., Liu, Y., Lee, H.-J., Hsu, Y.-H. & Chen, J.-H. Activated androgen receptor downregulates E-cadherin gene expression and promotes tumor metastasis. Molecular and cellular biology 28, 7096-7108 (2008).
43 Grant, C. M. & Kyprianou, N. Epithelial mesenchymal transition (EMT) in prostate growth and tumor progression. Translational andrology and urology 2, 202 (2013).
44 Zhang, L. et al. Type IV collagenase (matrix metalloproteinase-2 and-9) in prostate cancer. Prostate cancer and prostatic diseases 7, 327-332 (2004).
45 Borowicz, S. et al. The soft agar colony formation assay. JoVE (Journal of Visualized Experiments), e51998 (2014).
46 Rodriguez, L. G., Wu, X. & Guan, J.-L. in Cell migration 23-29 (Springer, 2005).
47 Chen, H.-C. in Cell migration 15-22 (Springer, 2005).
48 Kapoor, C., Vaidya, S., Wadhwan, V., Kaur, G. & Pathak, A. Seesaw of matrix metalloproteinases (MMPs). Journal of cancer research and therapeutics 12, 28 (2016).
49 Shorning, B. Y., Dass, M. S., Smalley, M. J. & Pearson, H. B. The PI3K-AKT-mTOR pathway and prostate cancer: at the crossroads of AR, MAPK, and WNT signaling. International Journal of Molecular Sciences 21, 4507 (2020).
50 Rashid, A. et al. Resveratrol enhances prostate cancer cell response to ionizing radiation. Modulation of the AMPK, Akt and mTOR pathways. Radiation oncology 6, 1-12 (2011).
51 Park, H. U. et al. AMP-activated protein kinase promotes human prostate cancer cell growth and survival. Molecular cancer therapeutics 8, 733-741 (2009).
52 Bottone Jr, F. G. et al. The anti-invasive activity of cyclooxygenase inhibitors is regulated by the transcription factor ATF3 (activating transcription factor 3). Molecular cancer therapeutics 4, 693-703 (2005).
53 Edagawa, M. et al. Role of activating transcription factor 3 (ATF3) in endoplasmic reticulum (ER) stress-induced sensitization of p53-deficient human colon cancer cells to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis through up-regulation of death receptor 5 (DR5) by zerumbone and celecoxib. Journal of Biological Chemistry 289, 21544-21561 (2014).
54 Ku, H.-C. & Cheng, C.-F. Master regulator activating transcription factor 3 (ATF3) in metabolic homeostasis and cancer. Frontiers in Endocrinology 11, 556 (2020).
55 Rodríguez-Berriguete, G. et al. MAP kinases and prostate cancer. Journal of signal transduction 2012 (2012).
56 Odero-Marah, V., Hawsawi, O., Henderson, V. & Sweeney, J. Epithelial-mesenchymal transition (EMT) and prostate cancer. Cell & Molecular Biology of Prostate Cancer, 101-110 (2018).
57 Shih, L.-J. et al. Betel nut arecoline induces different phases of growth arrest between normal and cancerous prostate cells through the reactive oxygen species pathway. International journal of molecular sciences 21, 9219 (2020).
58 Knudsen, K., Diehl, J. A., Haiman, C. & Knudsen, E. Cyclin D1: polymorphism, aberrant splicing and cancer risk. Oncogene 25, 1620-1628 (2006). |